i bt Mero frocessor ArcbHechre
TC/?‘Y Do/(Ao## - 1977

Chapter5: F8 / 71

Figure 5-1 Single chip F8s

5 On-chip On-chip

ROM - RAM* 1/0
3870 2K ROM 64byte 4 ports
3872 4K ROM 128byte 4 ports
3876 2K ROM 128byte 4 ports

*Includes the 64-byte scratchpad RAM

Figure 52 Multichip F8 system
8

The F8 is a Fairchild invention and started out as a two chip Vo= 3850

microprocessor. Like the other 8-bit processors, the F8 has evolved 10 <2 cPU

into a whole cadre of machines. Some are single c

hip processors with
h member of the F8 I

program and data storage. The capability of eac
family is summarized in Figure 5-1. Most version

s of the F8 are single
chip processors which contain ROM and I/0.

8 3851
Unlike the microprocessors we have discussed so far, it is necessary /0 o PSU +————INTERRUPT
to explore more of the hardware aspects of the F8 to thoroughly 1/0 <>

[' as ! ! ; 1K ROM l TIMER
understand its architecture. The original two chip F8 architecture is

shown in Figure 5-2. The heart of any multi-chip F8 system is the I~
3850 processor. This chip provides the basic processing capability

and working registers. It differs from
. . PIO e INTERRUPT
it does not include the program cou
They are contained in a companion chip. Removing the addressing 1o | TIMER

logic from the CPU eliminates the need for an address bus which,

i
|
other microprocessors because =
|
|
i
!
in turn, reduces the external outputs of the chip. The CPU and sup- ! I
[
[
|
I
|
i

nter or memory address logic.

port chips are all 40-pin chips. In addition to the ALU and working
registers, two input/output ports, system clock generation, and
power on reset are also included in the CPU.

In addition to the CPU chip, a multi-chip F8 system must include
one or more of the following support chips:

3853 - PROM
sm!

a masked ROM for program storage, four 8-bit input/output ports, a
programmable internal timer, and external interrupt control. The

|

!

i

| RAM
Program storage unit (3851) The program storage unit provides :

|

i

[}

OPTIONS

70

72 [/ Part One: Background

PSU in tandem with the CPU, creates a minimal two chip system.
This combination provides 1K bytes of program storage (masked
ROM), 8-bit input/output ports, 64 bytes of data storage or RAM,
and a programmable internal timer. Even when it was first intro-
duced, the cost of this system was low in comparison to other
processors. This is probably why the F8 has always been a popular
choice for equipment control.

Memory interface units (3853 and 3852) Since the CPU does not
contain a program counter or other memory addressing registers, it
1s necessary to add another chip if the system must interface with
external ROM, PROM, or RAM. The static memory interface (3853)
is used to interface with static memories (RAM or ROM). The
dynamic memory interface 3852 is used to interface with dynamic
RAM. This chip provides the address and refresh circuits required by
dynamic RAM. Both chips provide the address bus missing from the
basic CPU chip.

Programmable 1/O (3861) This chip is a subset of the PSU and
includes all PSU features except masked ROM. It is intended to pro-
vide either additional I/O capability or another timer.

Direct memory access (3854) This chip allows an external device
to access the memory. In some microprocessors, DMA is accomplished
by forcing the processor to wait or hold. However, the F8 does not
provide a hold or wait input. Therefore, it is necessary to add a DMA
chip to the system if an external device must access memory. This
does not represent a major increase in system components because
other processors require extra external logic to control the hold
Input.

INTERNAL ARCHITECTURE

The F8 architecture is illustrated in Figure 5-3. It contains a single
8-bit accumulator and 64 scratchpad registers. One additional register,
the indirect scratchpad address register (ISAR), is used to access
many of the scratchpad registers because only a few of the scratch-
pad registers can be accessed directly. In fact, only the first 16 can be
addressed by register addressing. The other 48 registers must be ad-
dressed via the ISAR.

In addition to the working registers, the F8 contains a 16-bit
program counter (called P0), a data counter (DC), and program
counter stack register (P). The program counter allows direct access
to 64K of memory. The data counter register can be compared to
the (H,L) register pair of the 8080 and is used to access external

Chapter5:F8 /| 73
RO
.
N ——
.
RS J [+ STATUS
R10 HU
R11 HL >
R12 KU \ *
DC() DCI
R13 KL
PO *Not all
Ri4 Qu systems
> STAC,K provide
R15 aL \ two data
counters
R16 PO
R17 -
. __/ \\\\\
* _/ \\\\
. S~
i
R63 :
|
1
|
[}
1
]
ACCUMULATOR ISAR

Figure 5-3 Register architecture

memory. This is the only vehicle for accessing operands from RAM
in the F8. As we will see later, the program counter stack is used for
subroutine and interrupt linkage, but it should not be confused with
the stack pointer in other machines.

ADDRESSING

The F8 has a number of addressing modes, some of which we have
not encountered in other processors. Register addressing is typical
of register addressing in most machines. The operand is con'tained in
one of the general registers. For arithmetic or logic operations, the
first 12 general registers can be directly addressed as RO to R11.
For example:

74 | Part One : Background

AS R6

will add the contents of R6 to the accumulator and place the result
in the accumulator.

Scratchpad indirect addressing is like register indirect addressing,

but the operand is contained in the scratchpad register (instead of
memory) whose number is contained in ISAR. For example, if ISAR
contains 31, then scratchpad register indirect selects scratchpad
register 31. This is the only way to access registers 16 to 63. There
are three variations of a scratchpad register indirect reference:

S the operand is selected by ISAR and ISAR remains unchanged.

I same as S, but the lower order $ bits of ISAR are incremented
after the scratchpad register indirect operation is performed.

D same as S, but the lower order 3 bits of ISAR are decremented
after the scratchpad register indirect operation is performed.

Note that just the lower 3 bits of ISAR are incremented or de-
cremented during a scratchpad autoincrement or decrement. This
means that it is convenient to access scratchpad registers in groups of
8. Whenever the lower 3 bits of ISAR are all set to one, then a status
register condition code indicates that fact. A branch on ISAR lower
not equal to 7 (BR7) is part of the branch repertoire and is useful for
loop control.

An immediate addressed operand is contained in the byte follow-
ing the instruction. For example:

Al 6

will add 6 to the accumulator and store the result back in the accu-
mulator. A variation of immediate addressing, immediate addressing/
short form, is a unique mode of immediate addressing and can be
used to decrease program size. The operand is contained in the lower
4 bits of the instruction byte itself. The following instruction will
load the accumulator with the immediate value 4, but the instruction
is only 1 byte long:

LIS 4

Relative addressing is used to determine the destination address
for most jumps. The operand address is formed by adding the second
byte of the instruction to the address of the instruction plus one.
Notice that this calculation is different from the relative addressing
calculation for the Z80 or 6800 because the offset is relative to the

Chapter5: F8 /| 75

second half of the current instruction instead of the next instruction.
For example, the following instruction will transfer control to the
address of the current instruction +6 (assume that the assembler
enters the +5 directly into the instruction):

BR +5 |

Direct addressing is available but it is restricted to just three in-
structions. The operand address is in the second and third bytes of
the instruction. Direct addressing allows access to any of the 64K
addressing space. The three instructions which allow direct address-
ing are:

Jump (JMP)
Call to subroutine (PI)
Load data counter (LR DC)

The F8 also provides register indirect addressing, but the operand
address must be contained in the data counter register (DCO). After
the operand has been referenced, the data counter is advanc_:ed by
one. No other registers can be used for register indirect addressing.

USING THE F8

The F8 instruction set includes numerous side effects which are not
typical and are worthy of special attention. If you are not aware of
the oddities, you may incorporate bugs into your program which are
difficult to locate. The status register condition codes differ from
most other micros. The carry and zero flags are the same as usual,
but the sign flag is different. In particular, S=1 implies that the result
was plus, not minus. If you stick to the basic branches, it should not
present a problem. If you prefer to “roll your own’’ using the branch
on condition true or false, be careful not to reverse the intended test.

Whenever an extended jump or subroutine call is executed, the
accumulator is modified. This is clearly stated in the manual, but is
all too easy to forget. It also eliminates one method of passing
parameters to the subroutines. '

The odd thing about the F8 is that the system can have more than
one PC or DC! Anytime the PC or DC registers are loaded, all PC or
DC registers in the system are loaded. This multiplicity of PCs and
DCs is transparent to the programmer (it simplifies the hardware by
avoiding address transmissions between chips), or so it seems. One
problem is caused because the F8 provides two data counters, DCO

76 / Part One: Background

and DC1, but some of the support chips in the system only provide
one, DCO. Whenever the data counter is loaded, all DCO registers are
loaded accordingly. However, when the data counters are exchanged,
the chips with one data counter simply ignore the exchange. If the
system contains one chip with two data counters and one with only
one, data counter exchanging can produce improper memory ad-
dressing.

The F8 performs compare operations differently from other
microprocessors. In particular, the accumulator is subtracted from
the compare value instead of vice versa. This is not an architectural
shortcoming, but it certainly can be confusing. While we are dis-
cussing the compare, you might also note that there is no way to
compare the accumulator with the scratchpad registers. The ac-
cumulator can only be compared with a constant or memory.

There are several alternatives to comparing the accumulator with
the scratchpad. One is to place the scratchpad contents in RAM and
then compare the accumulator with memory. This is practical due
to the RAM addressing scheme. DCO is the only way to address RAM,
and it is incremented after each reference. Another way to compare
the accumulator with scratchpad values is to use the logical or arith-
metic instructions. To compare for equality, just exclusive-OR the
scratchpad with the accumulator.

The F8 has decimal addition and subtraction instructions to
simplify handling BCD data. They must be used cautiously. Prior to a
decimal add, the constant 66 (hexadecimal) must be added to the
accumulator. Then the decimal add can be done.

The F8 has one other idiosyncrasy. It does not provide a two’s
complement instruction nor does it provide a subtract. Therefore,
a two’s complement subtraction requires three instructions and it is
still done in reverse of normal ordering:

COM 1’s complement of A
INC increment A (now two’s complement)
AS Ri add register to A

SUBROUTINE INTERFACE

When a subroutine call is executed, the F8 places the return
address in the program counter stack register, P. If the called routine
makes further calls, this register must be preserved. Even if the sys-
tem can get by with one level of subroutine call, it may still be neces-
sary to save this register because an interrupt sequence is performed

Chapter5: F8 [/ 77

the same as a subroutine call. Therefore, if the subroutine does not
immediately save the program counter stack and an interrupt is
honored, the return address is lost. The return address can be stored
in a scratchpad register.

INTERRUPTS

As already mentioned, the F8 treats an interrupt just like a sub-
routine call. The return address is stacked in the program counter
stack register, P, and control is transferred to the interrupt address.
There is a significant fact, carefully hidden in most F8 literature,
that may impact software design; namely, external interrupts and
timer interrupts from the same chip cannot be enabled at the same
time. This makes it difficult, if not impossible, to use both features
simultaneously.

INSTRUCTION SET

The following summarizes all of the instructions for the F8. The
table includes the execution time in short cycles for each instruction.
A short cycle is four times the basic clock rate. For example, if the
clock rate is 2MHz (.5 microseconds) then a short cycle is 2.0 micro-
seconds. If two times are shown (e.g., 3/3.5) the longest time is for
a jump that is taken. In the summary, the following notations are
used:

A accumulator
Ri scratchpad register 1’ (e.g., R11)
PO program counter
P program counter stack
DCO memory address register
DC1 alternate memory address register
W status register
t 3-bit status selection)
ISAR scratchpad address register. This register is used to address
scratchpad registers via register indirect addressing.
r scratchpad addressing as:
Oto 1l select RO to R11
I select (ISAR), then ISAR=ISAR+1
S select (ISAR)

78 |/ Part One: Background

D select (ISAR), then ISAR=ISAR-1
1 4-bit constant
n 8-bit constant
nn 16-bit constant
() contents of memory (e.g., (DC))

F8

Mnemonic Len Cycles Description

8-bit transfers

LRAr 1 1 A=r

LR A,Ku 1 1 A=R12

LR AKI 1 1 A=R13

LR A,Qu 1 1 A=R14

LR AQl 1 1 A=R15

LRr,A 1 1 r=

LR Ku,A 1 1 R12=A

LR KIA 1 1 R13=,

LR Qu,A 1 1 R14=

LR QlA 1 1 R16=A

I§TM } gg {\=(DCO) DCO=DCO+1

K DCO)=A DCO=

LR A, IS 1 1 A=IS)AR co=beot

LR IS,A 1 1 ISAR=A

LR JW 1 1 R9=W

LR W{J 1 2 W=R9

LISL i 1 1 ISAR({lower)=i

LISU i 1 1 ISAR(upper)=i

Lin 2 25 A=n

LIS 1 1 A=i

CLR 1 1 A=0

16-bit transfers/arithmetic

LR KPP 1 4 R12=P{upper}, R 13=P{lower)

LR H,DC 1 4 R10=DCO{upper),
R11=DCO(lower)

LR Q,DC 1 4 R14=DCO(upper),

LR P K ; s R(1 5=DCO(lower)

, P{upper)=R12, P{lower)=R13

LR DCH 1 4 DCO(upper)=R10,
DCO(lower)=R11

LR DC,Q 1 4 DCO(upper}=R 14,
DCO(lower)=R 15

DCi nn 3 6 DCO=nn

XDC 1 2 DCO0=DC1, DC1=DCO

ADC 1 25 DCO=DCO+A

8-bit arithmetic

ASr 1 1 A=A+r

AM 1 25 A=A+{DCO0), DC0O=DCO0+1

Aln 2 25 A=A+n

ASD r 1 2 A=A+r (decimal adjusted)

AMD 1 25 A=A+(DCO) (decimal adjusted)
DCO=DCO+1

NSr 1 1 A=A AND r

NM 1 25 A=A AND (DCO0)}, DCO=DCO+1

Nin 2 25 A=A AND n

Mnemonic

XSr
XM
Xin
oM
Oin
CcM
Cin
INC
DSr
LNK

Jumps

BR n
BCn
BNCn
BPn
BM n
BZ n
BNZ n
BNO n

BT t,n
BF t,n
BR7n

JMP nn
LR PQ,Q

Call/return
PK

Pl nn

POP

Shifts

SL 1
SL4
SR 1
SR 4

Misc.

com
NOP
El
DI

Input/output

INn
INS i

OouUT i
ouUTs i

Len

-t e N) A = N =

—-w NNN NNNNNNNN

- - =

- b e =

- N

=N

Cycles

n coooow

35

3/3.5
3/3.5
3/3.5
3/3.5
3/35
3/3.5
3/3.6

3/3.6
3/3.5
2/2.5

55

25
6.5

QU Y

- e b

4
2(i=0,1)
4(i=4,5,6,7)
4

2(i=0,1)
4(i=4,5,6,7)

Chapter5: F8 / 79

Description

XOR r

XOR (DCO), DCO=DCO+1
XOR n

OR (DCO), DCO=DCO+1
A=A ORn

compare {(DCO) to A DCO=DCO+1
compare n to A

A=A+1

r=r-1

A=A+CY

>>>>
o
>>>>

PO=PO+1+n

IF CARRY THEN PO=P0+1+n

IF NO CARRY THEN PO=P0O+1+n
|F POSITIVE THEN PO=P0+1+n
IF NEGATIVE THEN PO=PO+1+n
IF ZERO THEN PO=PO+1+n

IF NOT ZERO THEN PO=P0O+1+n
IF NO OVERFLOW THEN
PO=PO+1+n

IF t THEN PO=P0O+1+n

IF NOT t THEN PO=P0+1+n

IF iISAR{lower) NOT 7 THEN
PO=PQ+1+n

PO=nn, A is destroyed
PO(upper)=R14, PO{lower)=R15

{call to 'K’} P=PO
PO{upper)=R12, PO{lower)=R13
{call direct) P=PO PO=nn

A is destroyed

(return) PO=P

shift A left one, zero fill
shift A left four, zero fill
shift A right one, zero fill
shift A right four, zero fill

A=1's complement of A
no operation

enable interrupts
disable interrupts

input (n) to A
input (i) to A

output (n) from A
output {i) from A

