User’s

Manual

Na_tib_nal
Semiconductor

- COP400 .

Product
Development
System

"\.‘n‘l

COP400
Product
Development
System

USER’S MANUAL

National
Semiconductor

420305548-001
January 1980

© National Semiconductor Corporation

2900 Semiconductor Drive, Santa Clara, California 95051
(408) 737-5000/TWX (910) 339-9240

National does not assume any responsibility for use of any circuitry described;
no circuit patent licenses are implied, and National reserves the right, at any
time without notice, to change said circuitry.

|

& \
W i
|
Table of Contents |
i
Section Sub-Section/Description Page
CHAPTER 1. INTRODUCTION TO COP400 PRODUCT
DEVELOPMENT SYSTEM(PDS) 1-1
Tsd IntrodacHDR OIS G, cis 2 i s e w4 ey 2 ae 1-1
CHAPTER 2. DESCRIPTION OF PDS HARDWARE 21
23 Eront andBeat Eanels o v snn vor s eirt s i s st it ki 241
2:2 . ‘PBSEeipherallConfiguratlonsso oo vmvws s s s s 2-3
2.3 COP400 Emulation and Debug Hardware 2-4
CHAPTER 3. PDS INSTALLATION AND VERIFICATION 31
34 PhSinctellatiomsersimn e L 0Ll S e 3-2 w
3.2 Narification:of PDS:Cperation .z . -« covvvasvns v s st o ismns 3-5 i
CHAPTER 4. INTRODUCTION TO PDS SOFTWARE 4-1 l
4 4.1 e o e o e e 41
. 7l B S5 61 (1 1100 e e e O R RO 5 g 4.3 i
43 Systermlnitializallont s g v o ars s ik s v s s 4-4
B IRHEROREEEE e i e s s S e B R R 4-4 |
4.5 COBSOITANPIG TR BT s e St it s s 83 BT 4-4 |
48 PDSSYSIOMGOMIMBNAST o sl Sy b ebes St St ey 4.5 !
47 R O U S i 5 i ety d o m N S e A, 4-5 l
48 PDSSystemSoftware i 4-5 i
CHAPTER 5. FILE MANAGER PROGRAM(FM) 5-1 '
51 COMBINEFILESCommandc.vvvnvrvnrecmienanianns 5-1 !
55 EOPYEILECO AR 7« ivmosos i, s bai s sk 5-1 !
55 DELETECGEITEI 5 5 s vooms vnsn st o s e o s s ows 5.2
5.4 DIRECTORY COMmMand: b s e s vt v e diebiins et i o 5-2 |
E5 DUPEICATE B EEGOMMBINT G 0k o o siiiision s i abe 168005 47348 5-2 |
56 DUPLICATEVOLUMECommandoo... 5-2 ‘
671 HEADEBUOIMIMADT o cones vy v o sttt 143 o aw s ddvan 5-3 ;
BB . OO AT COTHIIEME G sy it siors oot et Em s Srce oo ooy 5-3 |
58 PACKFILECOMMANdovvieienernnnnniinsrarerrrnenen 5-3
540 PACGKAMOLUMEGoMMANG i v viaiineids s dadiainn 5-3
B il PROTECT. COMIMIENIT i vzt b ass wn s s s s =6 wa 5-3
512 RENAME Commandccvriiinnnianannannnns 5-3
543 SPACECOMMANG . n i i iim oy odv st St St itsnt waren 5-3
514 UNDELETECOMMANT <o conv amsamusm e s sims s samm i i 5-3
518 VOLUMEGOMMANG . ou vwu smn s masmawin e s obod o s8R S iint 5-3

Table of Contents

{continued)
CHAPTER 6. DISK INITIALIZATION AND TEST (DSKIT) 6-1
6.1 INIHALRZECSmmand--2csaias S5 e iiias i v b 6-1
8.2 - ADDBRESSTEST COMMBAL i v i viuwsiima s nsdaliase sis s 8 6-2
Bl o “BAERS EEEG RGO ERANES- o aswm s s wwmiumsnanto s mia G mpiiiese 6-2
BA CLEARCommantlesmenth, v ininieii s i waaas v venen 6-2
6.5 - DIRECFORYGHBMBOE © . . o vonnmnir s ans we s es Heais va 6-2
8.6 - DUMPSECTORCOMMANDoucomnissnsnsnrnssnesis 6-2
6.7 PATTERNTESTCommandc.cvciiiiiiininiennnnns 6-2
6.8 SECTORMABKSCommandcivvwmsmiassnssnnsnnan 6-3
8.9 S TATII SIS OTITTTIEING 1. s ome e o” smss swmyn s s mus o s A AR e 6-3
B0 TESTSECTOR Command .. o.ociiiiiviaiiaivsiie e s iovains 6-3
CHAPTER 7. TEXTFILEEDITOR(EDIT). 0o 7-1
71 Dl B MG 0 B L Lt s 8 DGR S A s 71
e o Ta 114 o § =) B) R O U VTR SRS | et 7-2
7.3 EDT Commara MBHE S b o abaiie g i dly s ds st g 7-2
7.4 Commands withinthe Edit Window 7-4
T4 INSERTEEOMIMEIT o e i i st i ana e iers 7-4
142 CLIST-Commant ooy st ax s pvdsia i ot i sen v o 7-4
T3 NEXT ComMBNE:sens g st dmsieyaonhy i e i 75
TA4 COPY COMEANG - v cone v oimivonn vt st s anle s s gint g aiss 7-5
7:4.5: DELETE COMMIERNT. « o xmommnims s oscsimimin ommms i aissimate 3 7-6
745 CLEARCORIENT o\ owmams vns wm s wnasdon e ndos e o 7-6
THT" BAOITE DOWIIBRI o om0 v simiond w0 ve 4 B30T r g am ot 76
T8 REABIGOMMIAIIE % omin P i i wsie wsm s s v i s 7-6
TAD WRITEGEHTRRNG . o oo iiiviivs vin v sva i v amss + 7-7
TAIOBOITCommiant (i .o coisvvsivaivs v siin o sise s e 7-8
TAALCHANGECommMAand ;o vovsves s saimnvnnasmes 7-9
T 412 BLICGN . COMMBNG-:. .- s e s simonmnnonwonis a5 Ba ok aEa 7-9
TANTSCALECOITIIANG, m s a5 s s e s ma 7-10
7.5 Commands that Move the EditWindow 7-10
751 TADVANCE COMMANG. ... 5o 5000 sy i anis 7-10
7:5:2 'POSITICNCOMMENG. .. m e wsnscsmmenns i & 5w is o 7-11
7.6 Disk Edit Mode Setup and Quit Commands.................. 712
TBT BRI Commandh o vivnniis o g8 s s wesivies v i ik 712
762 FINISHCommandcoicaiamnsranvveansins 7-13
7.6.3 TERMINATECommandcvnveienenneienienenas 7-13

7.6.4 ABORT Command

<

Table of Contents

(continued)

CHAPTER 8. COP CROSS ASSEMBLER(ASM) 81
8.1 Benera MO LI U oM s e e S i e e 81
B2~ TheASSomblviBroeBeS o ai s - s o T il d ot aies 8-2
8.3 Introduction to Assembly Language Statements 8-3
A4 Accombler STatamBRLS © i v o s Gl e e e 8-6
B Instiactiol Statements e, oo ad b S 8-6
8.4.2 Assignment Statementsol 8-14
B et IvE S At BIBNES s s s s sm e e s 8-14
SR ot e TR S e S S e 8-20
BEA DefinngaMEero0 i s 8-20
3o Callag Ao s . e s 8-21
858 USing PABIMEIETE sk 5 o men i gna o st ot e e oo i 8-21
8.54 “A” — ConcatenationOperator0 8-22
i e R e SR R e e e R 8-22
S e CaTal o TR LI el 2 ah L o n N T S R e o P e 8-23
A e TR EIMERIVES & o e ve o6 v v e e s e a Pt 8-24
BB MBS B I DOPIRE o . oo i cnn e ss e b 8-24
859 NestedMacroCalls.ovvmivvaiiiainaiiosan 8-25
8.5.10 Nested Macro Definitions00 v ieieiienn. 8-25
8.6 Example of Creating and Assembling a User Program......... 8:25

CHAPTER 9. COP MONITOR AND DEBUGGER (COPMON) 91

9.1 COPRMOMCREaBINEIEE . - o . s ot cov e et e 91
et ale i) [510] ot Pl ol e e et RS R e e S e 9-2
9.3 COPMBNGonscle CommManNdso ovian e i 9-2
9.4 Eront-Panel Conventlons: o - it oo e wia s s 9-8
9.5 i e B o i L e R o, S R e L e W 9-8
9.6 COPKON BEansl COMMARIS < iih cnmn ciiiia don sy sirs - wireiian 9-8
CHAPTER 10. FILELIST PROGRAM(LIST).................. 10-1

10.1 Usingebist . = it i e e 10-1

CHAPTER 11. CROSS REFERENCE PROGRAM (XREF) 111
31,1 Using XREF

Table of Contents

(continued)

121
12.2
12.3
12.4
12.5
12.6
127
12.8
12.9
12.10
12.11

13.1

CHAPTER 12. MASK TRANSMITTAL PROGRAM (MASKTR) . .. 12-1

Use of Mask Transmittal Programoooivuns 121
A GO MRS o e r Gl T oi s sl e it s et s e 12-2
(el = Lo e S e S S e S S e S 12-2
COMPANY CoOMMERE s .« . .ovwnsvs cnn e rwes sy 12-2
BT Cr T - eiifts i s it o s s ms s ek o e 12-2
BRTH BRIt o mc oo e T S T R 122
L beir i e e e 8 e I S e 122
AR EMOMERN e s e s e 12-2
oo oy T e R e . 12-2
A RO R Tl e PR PRSI e e 12-3
TRANERITIAL CoMmmand .. cvioon i, con s ihawin v s in 12:3
CHAPTER 13. MEMORY DIAGNOSTIC(MDIAG) 13-1

lisaof Memory:BIagnDstiBs i cuv s s visie s s oy st s 1341

Table Index

Table

2.1
2.2
4.1
4.2
4.3
4.4
4.5
4.6
4.7
5.1
6.1
6.2
7.1
72
7.3
7.4
8.1
8.2
8.3
8.4
8.5
8.6
8.7
88
89
9.1
9.2
9.3
9.4
9.5
9.6
9.7
10.1
121

Description Page
Acceptable Baud Rates for PDS Peripherals. 2-3
Recommended Peripheral Devices...................... .. 23
SystemBefdnibNedifierse.. o2 .. 0 0 o 4-1
BOSiInlemaliGioypesse - . == . = e 4-2
Protection Levels and Safeguard Provisions. 4-2
PleblEoRMEssanest. 8. e 4-2
EESEeINTosamaiSs . C8 o) o e e o 4-3
PDS System Program Names and Bromplrs e oot i e 4-3
PDS Console Input Control Characters 4-5
File Manager Command Summary 5-1
DS IO S ey, 7 28 e e 6-1
DSKIT Command Option Definitions 6-2
EditnComniandaRns R ET . S e s 7-2
Editor Command Format Definitions 7-2
bRl ol R S SRR e e 7-3
ERIT Command GontralCharacters oo 7-8
ASM Arithmetic and Logical Operators 8-5
CORMOOINSfctiemeai e .-l - = o o 87
COP400 Instruction Set Table e it o e e 8-8
Alphabetical Mnemonic Index of COP400 Instructions 89
Table of COP400 Instructions Listed byOpCedes 8-10
Summary of Assembler Directives 8-14
BoSTbatiensh DNa mal, aEe 0 e e e 8-15
ASCII Character Set in Hexadecimal Representation 8-16
SavemSegientiDecadedValues 52 . . 8-17
ValldiGORAOR BhInNDmMBers .. vt e 9-2
COPMON Console Command SN May-cv s oo e e 9-2
COPMON Console Command Option SUMMARY oo 9-3
GO GherstigmSuMMany 2t e on e e 9-5
COPMON Panel Command Table 9-9
COPMON Panel Operand Definitions..................... 910
CORMON PahelErrorMessages « o0 e 9-10
StmmayollIBOpions s ciie e s e 10-1

llustration Index

Figure

2
22
2.3
2.4
25
2.8
27
28
2.9
2.10
31
3.2
3.3
3.4
35
3.6
37
3.8
4.1
7l
e
8.1
8.2
8.3
3|

Description Page
PESiEronliPanelitetsnin e Tl v T e e e 241
PDSFrontPanelKeypadcoociiieiiiiiiniiiiiiins 21
875296 Pin Scrambler Informationl 21
ERGEaa Eanb s e v e S 2-2
PDS BaarPanelConneetors . .. v -c - vcve e iiaanananaie: 22
PDS Peripheral Configurations 2-3
PDS In-Circuit Emulation System 2-4
i< BT e L g USSP B 2-5
PDS Emulator Card Cable Connector Pinouts. 26
Efulate e MRSt s e e s e e e 2-6
PDS as it is Shipped fromthe Factory 31
Peripheral Connector Pinout 32
T BN R T e e e 33
T Conneotar Panele0 vvicmiivriin s niannwas 3-3
TTY Reader Relay Schematicot 33
DT 2 oI s e e e SRR S NS S 34
TIY B e alobOhs JIRE. . . i i ek A w e s 34
I ROz et (] e e e Y b T Ny o 0y GNP 34
Inserting a Diskette intotﬁe (B et e e S 4-1
Operational Sequences of Disk EditMode 71
Disk Edit Mode Edit Window Operator 71
INGLEDBirectiveOperation . - < - .o v vene o Fadaains sl 8-19
DSPLEY SRE SOICEIERHEE <. Pt iy s e e e S 8-27
DSPLY.SRC Assembly Qutput Listing 8-32

Typical Cross ReferenceListingoovnnn 11-2

i

4

Introduction to the COP400 |
Product Development System | |

(PDS)

1.1 Introduction to PDS

What is a “development system?” It is a hardware
and software package designed to aid the user in
developing a product incorporating a
microprocessor or microcomputer. A development
system provides the user with three major
capabilities:

1. Creating and editing text “files” (EDITING)

2. Translating text files to microcomputer machine
code (ASSEMBLING)

3. Executing and testing the machine code
(DEBUGGING)

The COP400 Product Development System,
hereafter called “PDS,” was designed specifically
to aid in the development of products using
National's 400 series ‘'Controller Oriented
Processors™ (COPs). This manual must be
supplemented with the COP400 Microcontrolier
Family Chip Users Manual, order number
420305785-001, which gives detailed information
concerning programming of COP400 devices.

PDS is a disk-oriented system. It is capable of
creating and accessing files of data stored on a
floppy diskette. For the user this means fast and
easy access to system software, rapid access to
his program files, and a convenient means of
providing National with COP400 program data for
the mask-making process. The user will soon learn
to appreciate the ease with which the “edit-
assemble-test” cycle is accomplished compared to
“‘paper tape” systems.

Another PDS feature is the COP400 debugging
capability. This includes hardware and software
which enable the user to single-step through his
COP400 program, breakpoint on an address, trace
program execution, and dump out internal COP400
registers. This invaluable feature further speeds up
the development cycle.

The user interacts with PDS via a system console
such as a teletype or CRT. An optional printer can
be attached to obtain program listings quickly. The
PDS front panel allows the user to perform specific
development functions without a system console.
Connectors on the rear panel of PDS interface to
an “emulator card” which emulates a particular
COP400 chip in the user's system. A PROM
programmer on the PDS front panel allows the
emulator card to be portable, for emulation in the
final environment of the user's system.

Now that we've described the basic parameters of
PDS, we think it's appropriate to use a few well-
chosen words on how we feel (and how we think
you will) about the COP400 Microcontrollers and
the COP400 Development System.

In the midst of a microcomputer industry
proclaiming the development of “first” products
and systems, we truly believe the COP400
Development System to be a “first” in providing the
user with a compact, easily usable system for
performing the above-mentioned development cycle
functions with a minimal amount of physical and
mental “set-up” time. The combination of portable
hardware, understandable and powerful PDS
system programs and commands, and the
convenience of a built-in disk drive together with
minimum peripheral device requirements result in
an integrated system capable of performing
complex software development and debug tasks
with minimum effort.

One important example of this integrated-concept

approach is the inclusion in the capabilities of the

system of in-circuit emulation of a COP400

program in the hardware environment of the user's

final system. As mentioned above, this is

accomplished using the PDS emulator card which

functions as a virtual COP400 device, running the)
user's program in its final environment. In effect, ¥ ;
all guesswork is removed from the development

cycle, with final debug being performed with the

COP400 emulator card driving the user’s hardware

under control of the user’s program.

This, however, isn't the end of the story. PDS
develops and debugs programs for a versatile and
powerful series of microcontrollers, the COP400
Microcontrollers. These devices are single-chip
microcomputers, containing all device timing,
internal logic, ROM, RAM and I/O necessary to
implement dedicated control functions in a variety
of small-system, dedicated applications. COP400
microcontrollers further reflect National's
integrated-concept approach, with each primary
COP400 device being a software-subset of the most
inclusive COP400 device, the COP440. To provide
the user with a choice among COP400 devices
specifically tailored to the user’s application at
minimal cost, each part contains numerous
electrical specification options, mask-programmed
into the part at the same time as the user’s ROM

program code. Further versatility is obtained by
providing different “technology’ versions of several
devices; for example, the NMOS COP420 is also
available as a CMOS part (COP420C) or as a low-
power device (COP420L).

The final integration associated with the COP400
development cycle, and perhaps the most
important, relates to the documentation describing
the various COP400 devices and the COP400
Development System. Contrary to the industry
practice of providing a proliferation of manuals,
separately describing each device, each
development system program, and hardware
characteristics and “hook-ups,” we've taken the
unusual step of providing you with everything you

may want to know but might be afraid to try and
find on these subjects in two manuals; this manual,
the PDS Users Manual, and the COP400
Microcontrotler Family Chip Users Manual.

After reading these manuals and using PDS to
develop a program for a COP400 device suited
specifically to and debugged in the actual
environment of your final system, we think you'll
understand why we're particularly proud of PDS
and the COP400 Microcontroller Family and why we
believe that we've finally brought the economy,
versatility and reliability of the microcomputer to
the small-system, consumer oriented customer —
or, to put it another way — that we've brought it all
back home for the first time.

THE USER SHOULD READ THIS MANUAL
THOROUGHLY BEFORE ATTEMPTING
TO OPERATE THIS MACHINE.

Description of PDS Hardware

This chapter provides a general description of PDS
hardware. This hardware consists of a host CPU
with support circuitry, and the following important
parts:

1. Front and Rear Panels

2. COP400 Emulation and Debug Hardware

These parts will be discussed in detail in the
following sections of this manual.

2.1 Front and Rear Panels

The PDS front panel is shown in Figure 2.1. The key
switch in the lower right corner is the power
switch. To its left are five other switches. The first
two, labeled “Program Load,” are used to load and
execute two different PDS system programs. The
first switch loads COP Monitor discussed in
Chapter 9. The second loads a test program
discussed in the Chip Tester Manual. The third
switch causes PDS to perform a diagnostic test on
its internal memory and the disk drive. The fourth
switch is for PDS system initialization. The fifth
switch is a spare which is not currently used by
PDS. These five switches are discussed at greater
length in Chapter 4.

Above the power switch is a 24-key pad, which
allows PDS functions to be performed without a
console. Figure 2.2 is a close-up view of the
keypad. Above the keypad is a dual four-digit LED
display used for displaying data requested by the
keypad. These items are discussed at greater
length in Chapter 9.

In the center of the PDS front panel is a quick-
release socket that is used for programming
PROMs. Two types of PROMs are acceptable: an
MM5204 512x8 UV-erasable PROM, and an 875296/
7435474 512x8 fusible link bipolar PROM. A pin
scrambler must be inserted when an
875296/743474 PROM is used. Figure 2.3 shows the
pin correspondences. Either of these two PROMs
can be used with a COP emulator card.

DO NOT ATTEMPT TO PROGRAM AN 875296
PROM WITH PDS UNLESS THE PIN SCRAMBLER
IS INSERTED.

On the left side of the PDS front panel is the floppy
disk drive door. The door latches are closed and
opened with the rectangular button to the left of it.
In the center of the button is an indicator light
which indicates that the drive is being used.

U%gﬁ?guarl\ducmr AODHESS/REGISTER AT
COPSZRmgruesT
EEEE
L
Lol
BEED
LT
EEEE

TESTER DG [

o

2-1

5 ARRY
oo 2

Figure 2.2 PDS Front Panel Keypad

PDS Frant Panel Socke! Pin Number

e and
" 7ASATA Pin Number . MM5204 PROM Pin Numbar

Figure 2.3.

22

e

24

o
1
i

both 1o pin 4

14

875296 Pin Scrambler Information

The PDS rear panel is shown in Figure 2.4. On each
side there is a cooling fan filter screen. Below the
left screen are a fuse holder and a plug for the
power cable. Above this screen are six connectors
which are used to connect peripheral devices to
PDS.

Figure 2.5 is a close-up view of the rear panel
connectors. The two labeled “TTY” and “CRT" are
used to connect a console to PDS. The one labeled
“TTY" can also be used to connect a printer. The
“TTY" is a 9-pin connector for teletype or other
current loop device connection and the “CRT" is a

standard 25-pin RS232 connector for a CRT or other
RS232 device. The center connector, labeled
“PRINTER," is a standard 25-pin RS232 connector
used to cennect a printer to PDS.

The connectors labeled EMULATOR 1 and
EMULATOR 2 interface PDS to an external
Emulator Card. (For further information, see
Section 2.3.)

The connector labeled TEST on the PDS rear panel
is used to connect a COP400 Tester. For further
information, see COP400 Chip Tester Manual, Order
No. 420305786-001.

o

T
P

T

Figure 2.4 PDS Rear Panel

TELETYPE CONSOLE
CONNECTOR
(FEMALE)

CONNECTOR
(FEMALE)

RS$232 PRINTER

R$232 CONSOLE
CONNECTOR
[FEMALE!

9 TTY 6 25 PH!NTEH

5 1 13 1
CECED 6000000000000, ooooooooooooo
© 000 000000000000, 000000000000

25 CRT

DDODOOOOOOQOG ‘OQOOQDOOODDOD?
GOOOOOOOOOOD 000000000000,

TEST 14

COP TESTER
CONNEGTOR
(FEMALE)

\A

25 EMULATOR1 14

COP EMULATOR
CONNECTOR 1
(FEMALE) (MALE)

M EMULATORZ 25

COP EMULATOR
CONNECTOR 2

Figure 2.5 PDS Rear Panel Connectors

To use the full capabilities of PDS, a console for
entering system commands must be connected to
it. A console can be any device with a standard
RS232 or current loop interface, and operating at
one of the baud rates shown in Table 2.1. The user
can set EVEN or NO parity, and carriage return and
line feed delays from 0 to 1000 milliseconds for the
console. The recommended console setups for the
various allowable baud rates are as follows:

110 Baud: 8-bit data (No Parity — PDS resets
bit 8=0), 2 Stop bits, Full Duplex
operation

150-9600 Baud: 8-bit data (No Parity — PDS resets
bit 8=0), 1 Stop bit, Full Duplex
operation; or 7-bit data, Even
Parity, 1 Stop bit, Full Duplex
operation

If the console uses a current loop interface, PDS
will assume a 110 Baud rate with the setup as
shown above. (See Section 4.3,

Table 2.1. Acceptable Baud Rates for PDS Peripherals

110
150
300
500

1200

2400

4800

9600

PDS will also accept a second peripheral device, a
printer, used for obtaining program listings. Any
device that meets the requirements listed above for
a console will also serve as a printer. The user can
set EVEN or NO parity, and carriage return, line
feed, form feed, and vertical tab delays from 0 to
1000 milliseconds for the printer.

When selecting peripheral devices for PDS, one
capable of producing hardcopy output is essential
in order to obtain program listings. Choosing a
teletype for the system console has the advantage
of providing hardcopy output, thus precluding the
necessity for a printer. Choosing a CRT for the
system console has the advantage that programs
can be displayed rapidly and editing can be done
more quickly. A printer is optional but is generally
necessary if a non-hardcopy device is selected for
a console. Table 2.2 lists some typical peripheral
devices.

23

Table 2.2. Recommended Peripheral Devices

CRTs: 1. Lear Siegler model ADM-3, part number 129450
Lear Siegler
Anaheim, California

o

. Hazeltine model 1500
Hazeltine Industrial Products Division
Gresenlawn, NY 11740

PRINTERS: 1. Centronics model 306 with RS232 interface
Centronics Data Computer Corporation
Hudson, New Hampshire

. FACIT model 4555 with RS232 interface
{Sweden)

G.E. TERMINET with RS232 interface

]

8

TTYs:

U

. Teletype model ASR3320/3JC manual read

o

. Decwriter

. Silent 700

(%

Note: A Silent 700 with RS232 interface requires pins 5 and 8 be
connected together.

2.2 PDS Peripheral Configurations

Chapter 3 includes detailed information on
connection of peripheral devices to PDS. Figure 2.6
shows the minimum peripheral configuration and
optional configurations of PDS. The minimum
configuration consists of a teletype only, for
entering system commands and obtaining program
listings. The first alternative configuration uses a
CRT for entering commands and a high-speed
printer for program listings. The second alternate
configuration uses a CRT for entering commands
and a teletype for program listings. PDS can be
used with no peripheral devices to do a limited
number of tasks, e.g., COP testing and COP
emulation.

MINIMUM
CONFIGURATION:
TTY = TELETYPE
PDS CRT OR
PRINTER DECWRITER
ALTERNATE
CONFIGURATION:
Ty
PDS CAT [CAT HiGH SEEED
PRINTER {-[r
ALTERNATE
CONFIGURATION: I [
Y
PDS CRT ¢~ CRT TELETYPE
ERITES (PRINTER)

Figure 2.6 PDS Peripheral Configurations

2.3 COP400 Emulation and Debug Hardware

PDS has numerous powerful features which greatly
facilitate COP400 system development. Among
them are:

1. In-Circuit Emulation

Shared memory may be first loaded from a disk
file, then altered andfor listed using the PDS
system software (COPMON) described in Chapter 9.
It is therefore simple to make COP program
changes.

2. Trace e
3. Breakpoint A drawing of the COP420 emulator card is shown in
z Figure 2.8. The card comes with an EMULATOR

4, -
Angla e cable. The TARGET cable is supplied with the PDS.
In-Circuit Emulation One end of the TARGET cable attaches to the
50-pin edge connector on the card. The other end
“In-Circuit Emulator” refers to hardware which splits into two connectors, one male and one
emulates the COP400 chip and which has an female, that attach to the PDS rear panel
EMULATION cable with a connector on it that is connectors labeled “EMULATOR 1" and
pin-for-pin identical to a COP400 chip and can be “EMULATOR 2." Figure 2.9 shows the pinout of
plugged into the user’s system in place of a these connectors. Five types of signals come
COP400 chip. An In-Circuit Emulator allows the across the TARGET cable:
user to test out his COP system in its intended
environment, and to modify and re-test the program 1. Shared memory address and data lines, used by
if errors are found in it. This enables the user to be the emulator card to access shared memory.
absolutely certain that his system is correct before 2. +5and —12 volt power supply lines from PDS
dedicating it to mask-making. to the emulator card. Three posts on the
The PDS In-Circuit Emulation System is shown in emulator card, labeled “Vgg,” “GND,” and
Figure 2.7. The “Emulator Card” emulates the COP = 12” provide user access to these supply
chip by using a special COP400 device which is lines. These posts are NOT mgant to allow the
identical to a masked-ROM COP, except that the user to access {he PDS supplies. They are to be
ROM has been replaced by an interface to an used f.or. 5UI_JTD|Y|"Q power to the emulator card
external memory. The external memory may consist when it is disconnected from PDS. The PDS
of PROMSs which plug into the emulator card. power supplies should NEVER be used to power
Alternatively, the emulator card may be connected the user’s system.
to a random access memory located within PDS. 3. A “RESET” signal from PDS to the COP chip et
Since this memory is used by both the emulator “RESET” pin. This enables PDS software to
card and PDS, it is called “shared memory.” reset the COP (see Chapter 9). The COP chip can
o .
COPSgFia™ e .
% CABLE1 3 : N
o o e N
@1 __PROM s
 SOCKETS - emuiAToR .
: omBLE
: o < : A
- DEVELOPMENT . STRIPETO
SYSTEM ANy s :
CoP £
EMULATOR COP ROMLESS
_CARD g‘:&ﬁ'ﬁ:ﬁ"u'ﬁ COP CHIP
PIN-FOR-PIN
IENTICAL CABLE -
COP PLUG

Figure 2.7 PDS In-Circuit Emulation System

24

also be reset by the user by pressing the button
labeled “RESET” on the emulator card.

. There are four connector posts on the right side
of the emulator card labeled “1,” “2," *“3,” and
“4.” The user may tie any TTL compatible signal
to these posts. These signals are available to
PDS via the cable. They are called “external
event” signals, and are useful for testing COP
systems. These signals will be discussed in
more detail later in this chapter.

. A PDS signal called “TRIGGER OUT” is available
at the post labeled “T.0.” on the emulator card.
It is a TTL compatible signal. The purpose of
this signal will be described later in this chapter.

In the center of the emulator card are two sets of
holes which are used for PROM sockets. Only the
5204 sockets are provided. When PROMSs are
placed in these sockets and the PDS software is
instructed to enter “PROM™ mode (see Chapter 9)
or if the PDS emulator card is disconnected from
PDS, the ROM-less COP chip will access the
PROMs. PROMSs replace shared memory, thus
providing a means of making the emulator card
portable for use in the final environment of the
COP chip, and releasing PDS for the next project.
The sockets labeled ''04” on the emulator card are
for MM5204 PROMs. An MM5204 can be erased
with ultra-violet light, allowing it to be used over
again. However, it also requires a — 12 volt power
supply. The sockets labeled ‘296" on the emulator

card are for 875296 PROMs. The 875296 is a fusible
link bipolar PROM which can be programmed only
once, but requires only a single +5 volt supply (as
does a COP chip). The PROM socket labeled

“PROM 0" is for COP addresses 0-X'1FF, and the
socket labeled “PROM 1” is for COP addresses
X'200-X'3FF.

The cable that is shown in the upper left of the
emulator card in Figure 2.8 is the In-Circuit
EMULATION cable. The plug on the end of this
cable can be plugged directly into the COP chip
socket in the user’s system. The + 5 volt power
required by the emulator card is supplied by PDS
via the TARGET cable. This +5 volt supply also
appears at the EMULATION cable plug. THE USER
MUST NOT CONNECT HIS SYSTEM POWER
SUPPLY TO THE PDS SUPPLY VIA THE
EMULATION CABLE. This could destroy one or
both supplies. A jumper labeled “V¢c” on the
emulator card may be cut to disconnect the PDS
+ 5 volt supply from the EMULATION cable and the
ROM:-less COP.

The emulator card has an RC oscillator for the
user's convenience. Its nominal frequency is

3.8 MHz. A jumper labeled “OSC” on the emulator
card can be cut if the user wishes to use an
external oscillator of his own.

Figure 2.10 summarizes the functions of the two
emulator card jumpers described above.

N-GIRGUIT
EMULATED EMULATmn
COP PLUG CABLE :
' / o Ve oo |:]R LOL ot RS 5 o
/ el p
S=hinscy =
£2 [°1
S =
wS o2
8y
=5 °3
[=1 58
B3 1 =< o4
RA kT4) 95
eom | []c ok
SOCKETS ~F——_ 727 National COP420 !
s Semiconduct. NOTE:
12 ::\ EMULATOR L piN 1 OF PROMS
° ——
[l ooououoooouo ~ = [cooc60606606 ///
GND—{=o 1 206 T <PROM 0
————— 1PROM 1 L 1 295
Veg ——f=o MW IJJA 000000000000 I
;
T.0. D [l NOTE: PIN 1 OF PROMS
ﬂ. RESET

H

1

I

l_/

PDS SHARED MEMORY
EDEE CUNNECTI}R

Flgure 2 8 COP420 Emulator Card

2:5

Emulator Card
Connector #

O W Nea s LN -

W W WL WoWw RN NN L iy D el
E 5N 5RLK2888888LEBR2EBREBUNEERBEEEssisarands

50

Signal Name

GROUND
GROUND
vCC
vCC
External Event 2
External Event 1
External Event 4
External Event 3
CLK
SKIP
A8
Ag
A3
A7
Al
A2
Ad
AQ
A6
a5
Not Used

Dl
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
. Not Used
Not Used
Not Usad
- Mot Used
o
B7
B2
B85
B3
.~ B4
BE
B1
TRIGGER OUT {T.0.)
Not Used
RST*
PROM DISABLE*
=12V
—12v
VCC
e
GROUND
GROUND

Emulator 1
Pin #
13
25
12
24
11
23
10
22
9
21
8
20

23
11
24
12

Emulator 2
Pin #

25
13

Figure 2.9. PDS Emulator Card Cable Connector Pins

Jumper Name " Function

“NCG! Connects PDS + 5 volt supply to ROM-less COP
chip and emulation cable. Cut this jumper to
disconnect PDS supply from user supply.

Sroscr Connects external RC oscillator to COP
: oscillator input.

Figure 2.10. Emulator Card Jumpers

Trace

“Program Trace’ is a real-time debug mode
available to the user during In-Circuit Emulation.

A “Trace Memory” within PDS will store 254
consecutive COP instruction addresses. This
storage operation is called a “TRACE."” A TRACE
can be initiated immediately on user command, or
it can be set up by the user to initiate
automatically when one of these conditions occurs:

1. The COP chip PROGRAM COUNTER attains a
specific address,

2. External Events 1 and 2 attain specific values.

The user can specify that a given number of
occurrences (from 1 to 256) of the above conditions
must occur before TRACE is initiated.

At the time that TRACE is initiated, a positive edge
() occurs on the “Trigger Out” (T.0.) signal post
on the emulator card. This signal is sometimes
useful for triggering oscilloscopes or logic
analyzers.

The user may specify the number of COP
instruction addresses that are to be stored prior to
the trigger. This number may be from 0 to 253. The
remainder of trace memory will automatically store
as many instruction addresses as possible
following the trigger. The user can thus perform
pre-triggering, post-triggering, and mid-triggering.

In addition to COP instruction addresses, trace
memory stores the following data:

1. COP chip "SKIP” flag, which indicates whether
or not the corresponding instruction was
skipped.

2. The four external event signals connected by the
user to the emulator card posts labeled *1,” “2,”
"3 and “4."

The TRACE operation is an important debugging
tool because it provides the user with a real-time
snapshot of COP program execution. Chapter 9 will
provide information about how to set up and
initiate TRACES.

-

Breakpoint

“Breakpoint” is a debug mode available to the user
during In-Circuit Emulation. It provides a means for
examining internal COP registers at specific points
within program execution. A “BREAK" can be
initiated immediately on user command, or it can
be set up by the user to initiate automatically when
one of the following conditions occurs:

1. The COP chip PROGRAM COUNTER attains a
specific address.

2. External Events 1 and 2 attain specific values.

The user can specify that a given number of
occurrences (from 1 to 256) of the above conditions
must occur before a BREAK is initiated.

At the time that BREAK is initiated, a positive edge
(JI") occurs on the “Trigger Out” (T.0.) signal post
on the emulator card. This signal is sometimes
useful for triggering oscilloscopes or logic
analyzers.

When BREAK is initiated, the COP chip instruction
lines are switched from shared memory or PROMs
over to a special transparent memory containing a
dump program. This program causes the ROM-less
COP chip to dump all internal registers and
memory to PDS, where it is available for inspection
by the user. The program then restores all registers
and maintains the COP chip in a wajting state until

2-7

commanded by the user to continue normal
program execution. When the COP is in this wait
state, it is referred to as being “breakpointed.”

The BREAK operation is an important debugging
tool because it provides the user with the
capability of examining internal COP registers as
program execution continues. BREAKPOINT is not
a real-time operation. Chapter 9 will provide
information about how to set up and initiate
BREAKPOINTS.

Single-Step

“Single-step” is a debug mode available to the user
during In-Circuit Emulation. It provides a means for
single-stepping the COP chip by ““breakpointing” on
each consecutive instruction. Internal COP
registers are available to the user after each
SERER

When the COP chip is being single-stepped, it is
maintained in the previously discussed
“breakpointed” state between “STEPS.”

The STEP operation is an important debugging tool
because it provides the user with a means of

following program execution step-by-step. Chapter
9 will provide information about how to single-step.

PDS Installation |
and Verification

Figure 3.1 shows the items shipped with PDS from
the factory. Chapter 2 discusses the peripheral
devices that are needed to make a complete
system. Installation of PDS involves connecting the
peripheral devices to PDS. After installation, a
verification operation must be used to test for
proper operation.

j tional Qo 85 s e |

et B i

S : >
i Z

B B -5
PDS MAINFRAME 5 EMULATOR CARD
POWER CORD 2KEYS CONNECTORS:
1EA. 9-PIN
2 EA. 25-PIN
USER'S CoPang CHIP COP400

MANUAL pponger USER'S
MANUAL

MICRD = 5
DEVELOPMENT CONTROLLER i =
SYSTEM FAMILY PDS MASTER PDS a’l}fgg&g
i - o e !

PLUS

A |4
MANUALS (2) FLOPPY DISKETTES (2}

Figure 3.1 PDS as it is Shipped from the Factory

31

3.1 PDS Installation

Figure 3.2 gives the pinout for the three PDS rear-
panel peripheral connectors. PDS is shipped with a
matching connector for each cne. The first step in
installation is to make cables to connect PDS to
the peripherals. The user must provide the
connectors for the peripheral sides of the cables.

TTY Connector (Current Loop)

Pin Number Signal Name

| TTY Xmitter (+)

2 TTY Printer (+}

3 Reader Relay {+)

4 not connected

5 not connected

6 TTY Xmitter
Return (=)

7 TTY Printer
Return (-}

8 Reader Relay
Return (-}

9 not connected

Printer and CRT Connectors (RS232)

RE232 Data Set Printer CRT
Pin Number Signal Name Pin Number Pin Number
1 GChassis Ground 1 1
2 Transmitted Data 2 not conn. 2
3 Recelved Data 3 3
4 Reqguest to Send 4 4 not conn.

5 Clear to Send 5} 5
6 Data Set Ready 6 6
7 Signal Ground 7 7
8-19 8-19 not conn. 8-18 not conn.
20 Data Terminal 20 20 not conn
Ready
21-25 21-25 not conn.21-25 not conn.

Figure 3.2. Peripheral Connector Pinouts

If a teletype or other current loop device is selected
for system console, it is attached to the connector
labeled “TTY.” If a CRT or other RS232 device is
selected for system console, it is attached to the
connector labeled “CRT.”

If the user chooses to use the optional printer
peripheral, it is attached to the “PRINTER" or
“TTY” connector. If a printer with an R5232
interface is chosen, it is attached to the connector
labeled “PRINTER.” If a teletype or other current
loop device is chosen for printer, it is attached to
the connector labeled “TTY.”

The “CRT" and “PRINTER” connectors are pinned
out as a standard RS232 ‘‘data set.” A direct pin-to-
pin cable (pin 1 to pin 1, pin 2 to pin 2, etc.) can be
used to connect PDS to a standard RS232 “data
terminal.” (Most CRTs have an R5232 data terminal
connector and are often supplied with a cable.)

The “TTY" connector is designed for use with a

model ASR3320/3JC manual read teletype or other

current loop device. If the user intends to use paper

tape input to PDS, a “reader relay” must be

installed on the teletype. The reader relay is -
available from National, part number IPC-16P/810R.

NOTE: THE READER RELAY WILL NOT NORMALLY
BE NEEDED.

In order to connect teletype to PDS, the following
steps must be followed. (The steps below are
indicated by circled numbers in Figures 3.3 through
3.8.)

1. Install the relay board Paper Tape Reader drive
circuit. A mounting tab with holes for mounting
the board is located in the lower corner next to
the keyboard. Mount the board with the
components facing away from the keyboard,
utilizing two number 6 screws and lockwashers.
(See Figure 3.3.)

2. On jack 4 (male) at the rear of the teletype,
remove the brown wire and pin from pin 11 and
install them at pin 7. (See Figure 3.4.)

3. Connect a wire from plug 4 (female), pin 7, at
the rear of the teletype (using the Molex
terminal) to the SOL terminal lug on the relay
board using the clip on the terminal. Also
connect a wire from the SOL terminal lug to 7
terminal L2 on the Line/Local Switch at the

front of the teletype. (See Figures 3.4 and 3.5)) s

4. Run a wire from L1 on the Line/Local Switch to
the RSW terminal lug on the relay board using
the clip on the terminal. (See Figure 3.5.)

5. Run a wire from pin 3 of the PDS “TTY"”
connecter to the P5 terminal lug on the relay
board using the clip on the terminal. (See
Figures 3.5 and 3.6.)

6. Run a wire from pin 8 of the PDS “TTY"
connector to the P6 terminal lug on the relay
board using the clip on the terminal. (See
Figures 3.5 and 3.6.)

7. Run a wire from pin 2 of the PDS “TTY"
connector to pin 7 of the terminal strip at the
rear of the teletype. (See Figure 3.6.)

8. Run a wire from pin 7 of the PDS “TTY"
connector to pin 6 of the terminal strip at the
rear of the teletype. (See Figure 3.6.)

9. Run a wire from pin 6 of the PDS “TTY"
connector to pin 4 of the terminal strip at the
rear of the teletype. (See Figure 3.6.)

10. Run a wire from pin 1 of the PDS "TTY”
connector to pin 3 of the terminal strip at the -
rear of the teletype. (See Figure 3.6.)

11. Install the two thyrectors (transient
suppressors) on the Line/Local Switch. Connect
one between terminals L2 and 2 and the other
between terminals L1 and 2. (See Figure 3.5.)

12

13.

14,

1

To set the TTY current source to 20mA, move
the blue wire from terminal 3 to terminal 4 of
the power resistor R1. (See Figure 3.7.)

To set the receive current to 20mA, move the
purple wire from pin 8 to pin 9 on the terminal
strip at the rear of the teletype. (See Figure 3.8.)

To configure the TTY for full duplex, move the
white-blue wire from pin 4 to pin 6 of the
terminal strip and move the brown-yellow wire
from pin 3 to pin 5. (See Figure 3.8.)

To disable the automatic answerback option,
locate the cavity behind the keyboard. Note that
there are nine codebars located directly
beneath the carriage, and at the front and rear
of the codebars there are two additional bars,
called codebar basket tie bars. These, plus the
bars across the ends of the codebars, comprise
the codebar basket tie bars. At the right front of
the codebar basket is located a copper colored

16.

17.

MOLEX CONNECTOR PANEL :
10 pnwnEn pngug-. TTY CONNECTOR PANEL
IN PEDESTAL gsNErf FIB. 3.4)
I:l.l _/TEHM!NM, STRIP #151411
it
DISTRIBUTOR IBEE e = 0
MOTOR| | TRIP MAGNET
ASSEMBLY] POWER SUPPLY
READER RELAY
i CURRENT SOURCE
p{,’?rcf" = RESISTOR (SEE FIB. 3.7}
PRINTER UNIT O« capaciTon
READER RELAY.
ane £l
TAPE D PC BOARD
READER KEYBOARD

%— MODE SWITCH

Figure 3.3 TTY Outline

clip. Refer to Teletype Bulletin 3108, Volume 1,
for an illustration of the codebar basket tie bar.
Note that this is an illustration showing two
types of clips and not actual location of the
clip. On models where the clip is not provided,
install a clip on the third slot from the right. A
clip can be purchased from any local Teletype
distributor. On models equipped with the clip, it
will be found placed over the second slot. Move
it to the third slot.

Before connecting the TTY cable to PDS,
connect 110V to the TTY and put it in the line
mode. Check to insure that 110V is not present
on the connector that attaches to PDS. If 110V
is present, check all connections to the
Line/Local Switch. When there is no 110V
present, the TTY may be connected to PDS.

Plug the PDS “TTY" connector into the
connector at the rear of PDS labeled “TTY.”

\o

00000
00000
Q0QO

P1 P2 P3 P4

Figure 3.4 TTY Connector Panel

POTTER & BRUMFIELD
#JR-10C

POS TV PIN 3 Yy —(Ps;
1N4002
B
FDS “TTY"" PIN 8 y——pr)
| 1309

NS #9802163

GE -—(@l P4, PING
o L—{€—4P4 PIN11
(]

SP4B4
DISTRIBUTOR
TRIP MAGNET
ns = 115V COMMON
F4,PIN7

Figure 3.5 TTY Reader Relay Schematic . -

3-3

TERMINAL STRIP
#161411

PDS : b
ST
PDS “TTY"' CONNECTOR, CONN . b
MAIWE. SUPPLIED
ik L
- PHINTEH.O i —
8 & H
o (BT —
VIEW LOOKING TOWARD
PIN THAT WILL PLUG i
INTO REAR OF POS : 5
NOTE: “CRT" & “PRINTER"") amirrer | .
CONNECTORS, MALE, ARE 6 : —
RUMBERED AS FOLLOWS: - R
1 4 . A0} XMITTER | : e
; b
3=yt 2 i
~ READER
& RELAY o
§ ==t p5— 1 i
- Figure 3.6 PDS TTY Cable
1
(4) 20 !
R i oo 71 MR, en
POWER 141 _)D_ AM-(1)
RESISTOR :
#181816 7(5?& :]-—— g0 ma
L a2K
2) AB- mﬁ :
2K [AK-B-6
) _AB.-(zHN-G
- AK-3-W-G

Figure 3.7 TTY Power Resistor

TERMINAL STRIP : .
#151411 :
2 i 3 OPTION:
/_\ . \Emn INPUT CURRENT
9 R (___0mh __Jme
AD-4-Y >' AM-2-P

(60mA
8 - AD-7-BK-6
. . L— AM-(3)-W-BR
——BC-B-AG
— BC-7-W-¥ a4

— AM-[5)-W-BK
5 e e i i AM-(14}-W-BL
L — - \
e (— BL-6-0-G \
[~ AM-(17)-R
| HALF DUPLEX ——YO o~ AD8.8RY
— 3 —— AM-(18)-S
[BC-5-W-R
5 —— AH-(1)-BK BK
AH-(2)-W* W

k/—uvmrm
Figure 3.8 TTY Terminal Strip

3-4

The next step in PDS installation is to remove the
PDS top cover by taking out the two screws located
towards the rear of the cover, and slide the cover
off. Then check to make sure that all six PC cards
are seated firmly in their slots and all connectors
are firmly fastened. Replace the cover.

The final step in installation is to connect the
peripheral devices to PDS, plug the power cable
into the rear of PDS, and supply power to PDS and
all peripherals. At this point, PDS is ready for
operation. The following verification procedure
should be followed to verify proper operation. This
procedure is designed not only to test PDS, but
also to acquaint the user with the PDS system. The
user should read this entire manual to familiarize
himself with the system, then perform the
verification procedure.

3.2 Verification of PDS Operation

The following verification procedure is intended to
provide the user with both an introduction to
system operation and a verification of system
software and hardware. All user input is underlined
and terminated by a carriage return. User
responses to PDS interrogations are indicated (e.g.,
).The following five systems programs will be
used:

. DSKIT — to initialize a disk

- FM — to verify the new disk and new files

. EDIT — to create and edit a COP program

- ASM — to assemble the COP program

. COPMON — to debug the COP program

g AW N

Before a disk can be used, it must be initialized,
giving it a volume name and a directory. After the
COP development system is turned on, a carriage
return establishes the baud rate and calls EXEC.

Example:
Turn on Power and type @
EXEC,REV:A

X>@DSKIT
DSKIT,REV:B

D>
Place metallized tape over Write Protect slot on
new disk. Then insert disk. (Refer to Figure 4.1.) The
initialize command allows the user to specify the
volume name and header and gives the disk a
directory.
DI “PDSUSER”,"PDS USER"
READY TO RUN DESTRUCTIVE OPERATION ON DISK

(Y/N,CR = YES)?(CF
""" WRITING SECTOR MARKS ***
"** PERFORMING PATTERN TEST ***
*** BUILDING DIRECTORY ***
*** INITIALIZATION COMPLETE ***
After initialization is complete, the user may verify
the operation by using FM to display the directory.
A disk with FM on it must be inserted.
D>@FM

FM,REV:B
F>

35

Now the newly initialized disk is inserted.

F>D
DIRECTORY FOR: PDSUSER “PDS USER"
DIRECTORY EMPTY

SECTORS BAD: 0
SECTORS USED: 8
SECTORS FREE: 608

The user may obtain all the PDS master programs
by duplicating that disk to his or her new disk. This
is done with the duplicate command in FM. Each
time the volume name is displayed, that disk must
be inserted.

F>DU PDS TO PDSUSER

DUPLICATING VOLUME “PDS" TO VOLUME “PDSUSER"
(¥/N.CR = YES)? GR)

LOAD INDICATED VOLUME, PRESS RETURN
PDSUSER(CR)
PDS(CR)

POSUSER(GR)
CREATING FILE PDSUSER:EDIT MP
CREATING FILE PDSUSER:ASM MP

CREATING FILE PDSUSER:COPMON.MP
PDS

PDSUSER(CR)
CREATING FILE PDSUSERFM.MP
CREATING FILE PDSUSER:DSKIT.MP

END DUPLICATION
F>

3.3 Example Program

The user can enter a COP program using EDIT. The
proegram to be created here will read a number from
the COP420 "I” lines and add 5. The carry will be
ignored. The result will be output on the “D”
outputs, and the decoded 7-segment equivalent will
appear on the “L” outputs. A 50% duty cycle
sgquare wave will appear on the SK output. The
pulse width will increase with the magnitude of the
above addition. As the user changes the data on
the “I” inputs, there should be corresponding
changes on the other outputs. These outputs may
be examined and verified on an oscilloscope. The
probes may be attached directly to the proper pins
on the “COP” cutput cable from the emulator card.
The program will be called COPEX.

F>@EDIT COPEX
EDIT,REV:B

GREATE NEW FILE (YIN.CR = YES)?(GR)
AVAILABLE SECTORS: 495

B>l
1? JITLE COPEX, ‘COP EXAMPLE'
22 CLRA
32 EElL B ;QTO L CTO SK ON XAS
4? START:
He. ININ : READ 10-13 TO A

67 AISC 5

;ADD S

7? 0BD ; OUTPUT A TO D0-D3
87 LB# (ABORTED LINE TO INSERT A
NOP AFTER THE AISC)
82 CR
E>ITO7
72 NOP
82 CR
E>1
9? LBl O ; SAVE ENTERED VALUE + 5 IN
107 * MO
12 CLRA i SET UP A FOR
122 AISC 4 ; LQID ON PAGE 1
137 Lauip ; PERFORM SEGMENT LOOKUP
147 e
157 XAS ; OUTPUT 0 TO SK
162 NOP
177 NOP ; DELAY FOR 50% DUTY CYCLE
18? NOP
197 NOP
207 NOP
217 NOP
227 NOP
237 NOP
247 NOP
257 NOP
267 NOP
277 NOP
287 NOP
297 NOP
30? COMP : MAKE DELAY PROPORTIONAL
31? AISC 1 ; TO VALUE + 5§
327 JP -1
332 SC
347 XAS ; OUTPUT 1 TO SK
357 Lo ; GET ENTERED VALUE + 5
367 GOMP ; DELAY PROPORTIONAL TO
377 AISC 1 ; ENTERED VALUE + 5
387 AP 1
397 JP_START
407 PAGE 1
412 WORD 03F,006,05B,04F 066,06D,07D,
4 WORD 007,07F,067 ; 0-9
437 MWORD 077,07C,039,05E,079,071 ; A-F
442 LEND

(EXIT INPUT MODE)

457(CH)

E>FI

FIN

ISH CURRENT EDIT (/N GR = YES)?(CR)

36

The. user may verify the new program on the new

disk by displaying the directory with FM.

E>@FM

FM,REV:B

F>D

DIRECTORY FOR: PDSUSER “PDS USER"

FN D NAME TYPE SIZE —PIS

1 EDIT ..MP MAIN PROGRAM 20 2
2 ASM MP MAIN PROGRAM 32 2
3 COPMCN .MP MAIN PROGRAM 32 2
4 FM MP MAIN PROGRAM 16 2
3] DSKIT .MP MAIN PROGRAM 12 2
6 COPEX .SRC SYMBOLIC 4 2

SECTORS BAD: 0
SECTORS USED: 124
SECTORS FREE: 492

The user may now assemble the COP program,
displaying the assembly errors on the console.

F> @ ASM
ASM,REV:B

A>| = COPEX,Q0 =COPEX,L="CN,EL

CREATING FILE PDSUSER:COPEX.LM

END PASS 1

COP CROSS ASSEMBLER PAGE 1
COPEX COP EXAMPLE

13 00D 00 LQUID
ERROR UNDEFINED @

1 ERRCR LINES

56 ROM WORDS USED

END PASS 4

SOURCE CHECKSUM = EB8F

OBJECT CHECKSUM = 0276

INPUT FILE PDSUSER:COPEX.SRC
OBJECT FILE ~ PDSUSER:COPEX.LM
A

The above assembly error (“LQUID"” should be
“LQID") can be edited with EDIT.

W W W W W W

; PERFORM SEGMENT LOOKUP

(

A>@EDIT COPEX
EDIT.REV:B

AVAILABLE SECTORS: 488
INPUT FILE SECTORS: 4

E>RE
EOF AT 44
E>L 10/L
10 X
14 CLRA ; SET UP A FOR LQID ON
12 AISC 4 s PAGE 1
13 LQUID ; PERFORM SEGMENT LOOKUP
14 RC
15 XAS ; OUTPUT O TO SK
16 NOP
i
E>

The listing was interrupted by the user pressing a
key when the error was located. The “LQUID" is
replaced by a “LQID.”

E>E 13
13 LauID ; PERFORM SEGMENT LOGKUP
EDITS? LaID : PERFORM SEGMENT LOGKUP
13 LaiD ; PERFORM SEGMENT LOOKUP
EDITS?(GR)
E>FI

FINISH CURRENT EDIT (Y/N,CR=YES)?

OK TO DELETE FILE PDSUSER:COPEX.SRC (Y/N,CR= YES}’?
E>

The user may now re-assemble the corrected
program, obtaining an assembly load module file
(COPEX.LM) and a full assembly output listing.

E>@ASM | = COPEX,0 = COPEX,L=*PR

ASM,REV:B

OK TO DELETE FILE PDSUSER:COPEX.LM (YFN.CR:YES)?
CREATING FILE PDSUSER:COPEX.LM

END PASS 1

END PASS 4
A>

Notice that the listing was assigned to the printer.
The printer listing is shown below. No assembly
errors occurred.

COP CROSS ASSEMBLER PAGE 1
COPEX COP EXAMPLE

1 TITLE COPEX, ‘COP EXAMPLE’

2000 00 CLRA

3001 3365 LE! 5 ;QTOL, CTOSKON XAS
4 START:

5003 3328 ININ ; READ 10-13TQ A

6005 55 AISC 5 ;ADDS5

37

7006 44 NOP
8007 333E ©OBD ; OUTPUT A TO DO-D3
9009 OF LBI 0 ; SAVE ENTERED VALUE + 5
10 00A 06 X +IN MO
11 00B 00 CLRA » SET UP A FOR LQID ON
12 00C 54 AISC 4 ;PAGE1
13 00D BF LQID ; PERFORM SEGMENT LOOKUP
14 00E 32 RC
15 00F 4F XAS ; OUTPUT 0 TO SK
16 010 44 NOP
17 011 44 NOP ; DELAY FOR 50% DUTY CYCLE
18012 44 NOP
19013 44 NOP
20014 44 NOP
21015 44 NOP
22016 44 NOP
23017 44 NOP
24 018 44 NOP
25019 44 NOP
26 01A 44 NOP
27 01B 44 NOP
28 01C 44 NOP
29 01D 44 NOP
30 01E 40 COMP ; MAKE DELAY PROPORTIONAL
31 01F 51 AISC 1 ; TO ENTERED VALUE + 5
32020 DF JP <=l
33021 22 SC
34 022 4F XAS ; OUTPUT 1 TO SK
35023 05 LD ; DELAY PROPORTIONAL TO
36 024 40 COMP ; ENTERED VALUE + 5
37025 51 AISC 1
38 026 ES JP -1
39027 C3 JP START
40 0040 PAGE 1
41040 3F .WORD 03F,006,05B,04F,066,060,07D
041 06
042 SB
043 4F
044 66
045 6D
046 7D
42 047 07 .WORD 007,07F,067; 0-9
048 7F
049 67

COP CROSS ASSEMBLER
COPEX COP EXAMPLE

PAGE 2

43 04A 7T
048 7C
04C 39
04D 5E
04E 79
04F 71 g

44 END

-WORD 077,07C,039,05E,079,071 ; A-F

COP CROSS ASSEMBLER
COPEX COP EXAMPLE

PAGE 3

START 0003

NO ERROR LINES

56 ROM WORDS USED

SOURCE CHECKSUM = EB5A

OBJECT CHECKSUM = 027C

INPUT FILE PDSUSER:COPEX.SRC

OBJECT FILE PDSUSER:COPEX.LM

The new program may be tested now using 22 22 A6 E:1111

COPMON. 420 is the correct chip number. To make 23 BA017 Edi
it easier to see the program, zeros are deposited in ig ig :fg:g E:m
shared memory before loading the new program 26 26 A01A E1111
COPEX. 27 27 AD1B E:1111
01 E:1111
A>@.coPMON S i
4 111
COPMONAEV-E 2? g? i;gli ;711
GHIP NUMBER (DEFAULT = 420)?@ o1
C DEC 32 32 A020 E:1114
0>L0 CoPeX R S
e
To begin execution of the program, first reset the 87 37 ADIF il
COP, then start by giving the ‘GO’ command. ;g :: i:gfl; :m
C>RE 40 40 A:020 E:1111
41 41 ADTF E:1111
CHIP IS RESET 42 42 A:020 E:111
43 43 A01F E:1111
C>G 44 44 A:020 E:1111
45 45 AD1F E:111
On examining the outputs, it is discovered that the 46 46 A:020 E:1111
“L” outputs have the proper values, but the “D” 47 47 AOTF E11
lines do not. Also, the “square wave" on the “SK”
line is incorrect. Only one half of the cycle varies Sl
with the input. A good beginning for debugging is 48 48 A020 E111
to obtain a trace and examine the “path” of the 49 49 A01F E:1111
COP. 50 50 A:020 E1111
51 51 AO1F E:1111
C>TR 52 52 A020 E:1111
53 53 ADIF E:111
TRACE ENABLED: 54 54 A:020 E:1111
A:001 OCCUR: 1 PRIOR: O GO:N 55 55 AOIF E1111
56 56 A:020 EA111
C>RE 57 57 AO1F E1111
58 58 A:020 E1111
CHIP IS RESET 59 59 A:01F E111
60 60 A:020 E1111
c>G6 61 61 ADIF E:1111
TRACED ON A:001 AT A:001 62 62 A:020 SKIP E:1111
C>T 63 63 A:021 E111
0 0 A001 E1111 The word “SKIP” indicates that the instruction was
1 1A002 SKIP E1111 skipped. It also appears on the second half of two-
; ;:fggi L ::m word instructions. Notice that at trace location 13
A od A;OOS 5;1111 the address is 44, This is actually the second half
5 5A006 SKIP E1111 of the “LQID” instruction, and is the address of the
6 6 A007 E1 data to be loaded into the “Q" register. The second
7 TADOB SKIP E:1111 instruction, “LEIl 5, assigns the “Q" register to the
g ::fggi Em: “L” outputs. By looking at the trace, one sees that
A WDA;BBB E;Hﬁ program execution has proceeded as expected,
11 11 A:00C E1111 except that the loop at locations 1F and 20 was
12 12 A:00D E:1111 done 15 times. By examining the listing at those
13 13A044 SKIP E1M locations one sees that the accumulator wasn't
1; 1; ﬁfggi E::: loaded with the entered value before the first loop.
; : The “LD” instruction before the “COMP”
T instruction was omitted. Single-stepping through
the first several locations allows the user to
16 16 A:010 En111 inspect the COP registers, particularly the
1717 A011 E1111 accumulator and the “B" register.
18 18 A:012 E:7111
19 19 A:013 E:1111
20 20 AD14 E111
21 21 A015 E:d111

3-8

C>R
CHIP IS RESET
C>AU ALL
c>s

STEP A:0 B:00 C:0 G:0 I:F L:FF Q:66 S:F P:001
MO:FFFFFFFFFFFFFFFA M1:FFFFFFFFFFFFFFFF
M2:9FFFFFFFFFFFFFFF M3:3377777777777777

=)

STEP A:0 B:00 C:0 G:0 I:F L:66 Q:66 S:F P:003
MO:FFFFFFFFFFFFFFFA M1:FFFFFFFFFFFFFFEF
M2:9FFFFFFFFFFFFFFF M3:33777777777T7777

o

STEP A:F Bi00 C:0 G:0 |:F L:66 Q:66 S:F P:005
MO:FFFFFFFFFFFFFFFA M1.FFFFFFFFFFFEFFEE
M2:9FFFFFFFFFFFFFFF M3:3377777777777777

e
A:006 SKIPPED

STEP A:4 B:00 C:0 G:0 I:F L:66 Q:66 S:F P:007
MO:FFFFFFFFFFFFFFFA M1:FFFFFFFFFFFFFFFF
M2:9FFFFFFFFFFFFFFF M3:3377777777777777

=)

STEP A:4 B:00 C:0 G:0 |:F L:66 Q:66 S:F P:009
MO:FFFFFFFFFFFFFFFA M1:FFFFFFFFFFFFFFFEF
M2:9FFFFFFFFFFFFFFF

C>

From looking at the assembly listing, one sees that
location 7 has the “OBD” instruction which puts
the “B" register out to the “D” lines. After
executing this instruction “B" still has zero but “A"
has the correct value. A “CAB” instruction is
necessary before the “OBD.” Both of the mistakes
in this program require instructions to be inserted
when it is edited. But the “NOP" at location 10 may
be easily replaced with a LD instruction, giving a
much better square wave. After starting the chip,
the square may be displayed again.

C>PU 1D,LD

C>CL

BRKFT AND TRACE CLEARED
C>G

Cc>

39

The program may now be re-edited.

C>@EDIT COPEX
EDIT.REV:B

AVAILABLE SECTORS: 480
INPUT FILE SECTORS 4

E>RE
EOF AT 44
E>L
1 TITLE GOPEX, 'COP EXAMPLE’
2 CLRA
3 LEl 5 ;QTOL, CTOSKON XAS
4 START:
5 ININ i READ 10-13 TO A
6 AISC 5 ;ADDS
7 NOP
8 08D ; OUTPUT A TO DO-D3
9 LBl 0 :SAVE ENTERED VALUE + 5
10 % i IN MO
11 GLRA SET UP A FOR
128 voe
E>

The missing CAB instruction should be inserted to
line 8.

E:INTO8
8? caB
E>L
1 .TITLE COPEX, '‘COP EXAMPLE’
CLRA
LEI 5 ;QTOL,CTOSKON
4 START: i XAS
5] ININ ; READ 10-13 TO A
6 AISC 5 ;ADD 5
7 NOP
8 CAB
9 0OBD ; OUTPUT A TO DO-D3
10 LBI 0 ; SAVE ENTERED VALUE + 5
11 X ; IN MO
12 CLRA ; SET UP A FOR
13 AISC 4 ; LQID#"="
E>L 25
25 NOP
E>n 21
26 NOP
27 NOP
28 NOP
29 NOP
30 NOP
ki COMP ; MAKE DELAY PROPORTIONAL
32 AISC 1 ; ENTERED VALUE + 5
33 JP -1
34 sc
35 XAS ; OUTPUT 1 TO SK
36 LD RER
E>

The missing LD instruction should be inserted to
line 31.

E>IN to 31
31?7 Lo ; GET ENTERED VALUE + 5
32?7 (cB
E>L 25
25 NOP
E>N 21
26 NOP
27 NOP
28 NOP
29 NOP
30 NOP
31 LD ; GET ENTERED VALUE + 5
32 COMP ; MAKE DELAY PROPORTIONAL
33 AISC 1 ; TO ENTERED VALUE + 5
34 JP =1
35 SC
36 XAS #1 ks
E>

The edit mode may be finished now, replacing the
old program with the new one.

E>Fl

FINISH CURRENT EDIT (YﬂN,CFl:YES)?

OK TO DELETE FILE PDSUSER:COPEX.SRC (Y/N,CR= YES}"@
=i

The new program may be verified by re-assembling
and testing with COPMON.

E>@ASM | = COPEX,O = COPEX,L ="*PR

ASM REV:B
OK TO DELETE FILE PDSUSER:COPEX.LM (Y/N,CR=YES)?(CR
CREATING FILE PDSUSER:COPEX.LM

END PASS 1
END PASS 4

A

The new assembled program may be tested with
COPMON and an oscilloscope as before to verify
proper performance.

A>@COPMON

COPMON,REV:B

CHIP NUMBER (DEFAULT = 420) ?
C>LO COPEX

FINISHED LOADING

G>RE

CHIP IS RESET

G
c>

Now that both the source and load module files are
correct, the deleted versions may be packed with
the commands in file manager, giving more room
on the disk for new programs.

Cr@FM
FM,REV:B
F>

Now the new disk is examined and packed.

F>D

DIRECTORY FOR: PDSUSER “PDS USER"

FN D NAME TYPE SIZE PL VN
1 EDM MP MAIN PROGRAM SO% - Dty
2 ASM MP MAIN PROGRAM Ay oln
3 COPMON .MP MAIN PROGRAM B
4 M MP MAIN PROGRAM 9 2 3
5 DSKIT MP MAIN PROGRAM el
* COPEX .SRC SYMBOLIC e e
* COPEX LM LOAD MODULE i Eo e
* COPEX .SRC SYMBOLIC e D
* COPEX LM LOAD MODULE o o=n
6 COPEX .SRC SYMBOLIC e e
7 COPEX LM LOAD MODULE 30 5
SEGTORS BAD 0
SECTORS USED: 144
SECTORS FREE: 472
Fop
PACKING DISK (Y{N,GR:YES)’?
F>D
DIRECTORY FOR PDSUSER "PDS USER"
FN D NAME TYPE SIZE PL VN
1 EDIT MP MAIN PROGRAM DT e
2 ASM MP MAIN PROGRAM R
3 COPMON MP MAIN PROGRAM Sl
4 M MP MAIN PROGRAM B2
5 DSKIT .MP MAIN PROGRAM for = o
6 COPEX .SRC SYMBOLIC degg
7 COPEX LM LOAD MODULE dSre
SECTORS BAD 0

SECTORS USED: 128
SECTORS FREE: 488

Introduction
to PDS
Software

INDEX HOLE: -_

WRITE PROTECT SLOT —_

OUTWARD &
SLIGHTLY ABOVE
CENTER LINE

PDS software enables the user to edit, assembile,
and debug COP programs. This chapter will provide
the user with a thorough introduction to these
programs.

PDS software is divided into two parts:
1. Firmware in ROM.

2. Software on disk which can be loaded into RAM
and executed.

The firmware includes general routines for console,
printer, disk, front panel I/O system initialization,
diagnostics, and disk file manipulation. The
software includes a file manager, text editor,
assembler, COP monitor, and diskette initialization
and test programs.

4.1 Disk Files

A disk file is a collection of data stored on a disk
and given a name. (The words “‘disk,” ‘‘diskette,”
and "disc” are used interchangeably throughout
this manual.) The PDS filename has the following
syntax:

[VOLUME NAME:] NAME [.MODIFIER)

The brackets ([]) around a term indicate that the
term is optional and may be left off. An example of
a filename is PDS:SAMPLE.SRC. The volume name
is PDS, the name is SAMPLE, and the modifier is
SRC.

The “volume name” is a name given to a diskette.
All files on a diskette have the same volume name.
The volume name is given to the diskette when it is
“initialized” (Chapter 6) and can be changed with
the file manager program (Chapter 5). It may
consist of one to eight alphanumeric characters —
blanks and special characters are not permitted.
The volume name is optional in a filename. It PDS
encounters a filename with no voelume name, it will
use the volume name of the diskette that is
currently in the PDS disk drive. If given, the volume
name must be separated from the remainder of the
file name by a colon.

The “name’ part of a filename may consist of one
to eight alphanumeric characters. The first
character must be alphabetic — blanks and special
characters are not permitted.

The "modifier” part of a filename may consist of
up to three alphanumeric characters — blanks and

Pt
kd | Semiconducton
COPS LR

&
7
Z
Z
&

Figure 4.1 Inserting a Diskette into the Drive

special characters are not permitted. It is
separated from the beginning part of the filename
by a period. A period with no character following it
specifies a modifier with zero characters. The
modifier is usually used to describe the type of a
file. For example, “SRC” is used for text files and
“MP" is used for PDS system program files. This
convention is not mandatory. The user may choose
any modifier he wishes. The modifier and its
preceding period are optional. If left off, PDS will
provide a default modifier. Table 4.1 lists the
default modifiers.

. Table 4. System Default Modiflers

Modifier Definition
: SRC .Sou'rce_Tex_t"
CM - COP Load Module
__MP . PDSSystem Program
i Listing File
SY.T' ; Speclal System File

Each file on a diskette has a unique NAME.MODIFIER
combination. The user creates files using the PDS
file manager, text editor, or assembler programs.
PDS maintains a directory on each diskette,
describing the name and other information for each
file on it. The directory can be listed by using the
PDS file manager program (Chapter 5).

Each file has a special number called an Internal
File Type (IFT) maintained by PDS in the diskette
directory. The IFT is not alterable by the user. It is
used by PDS to indicate the type of data in each
file (source text, system program data, etc.). This
allows PDS to prevent the user from accidentally
assembling a binary data file, or attempting to
execute a source text file. The IFT is not related to
the file modifier. The modifier is selected by the
user; the PDS selects the correct IFT regardless of
what modifier is used. Table 4.2 lists the PDS IFTs.

A file whose IFT is SYM (symbolic) consists of
ASCII data written on the disk. The PDS file
manager program (Chapter 5) generates the SYM
tile type when copying ASCII data to the disk or
when copying another SYM file. The PDS text editor
program (Chapter 7) requires a SYM file when
reading data from (he disk, and generates a SYM
file when writing data to the disk. The PDS

assembler program (Chapter 8) requires a SYM file
as input, and generates a SYM file when creating a
listing file.

A file whose IFT is LM (load module) consists of
binary data in COP load module format. The PDS
assembler program (ASM) generates an LM file as
object code output. The COP monitor program
(COPMON) requires an LM file for loading into
shared memory.

A file whose IFT is MP (main program) consists of
binary data in a format that allows it to be
executed by PDS with a @ command, described
later in this chapter. The PDS programs FM and
EDIT are examples of this file type.

Table 4.2. PDS Internal File Types

File Type Definition
SYM Symbolic Text
LM COP Load Module
MP PDS System Program

PDS maintains another special number for each
file, called a “protection level.” This is used to
prevent accidental destruction of files. Table 4.3 is
a list of protection levels and their safeguard
provisions. System programs such as FM and EDIT
create files for the user as level 2 files. All system
programs are initially level 3 files. The protect level
of any file can be changed with the File Manager
PROTECT command (Chapter 5).

If PDS is directed to write into an existing file, it
wll delete the existing file and recreate a new file
of the same name, type, and protection level. A file
cannot be recreated if its protection level is 3, and
if its protection level is 2, the user must give
permission for recreation. A deleted file is not
removed from the diskette. It still exists and can be
undeleted with the File Manager UNDELETE
command, provided that the disk has not been
packed (Chapter 5).

Table 4.3. Protection Levels and Safeguard Provisions

User Notitied
of Creation?

User Approval Required
1o Delete or Modify File?

o No No
1 Yas No
2 Yes Yes.
3 Yes Delete/Modify not allowed

A third special number for each file, called the
“version number,” is set to 1 the first time the file
is created. Each time the file is recreated, as, for
example, when a text file is edited using the editor
program, the version number is incremented. This
number is useful to help keep an up-to-date backup
of a file. It is recommended that the user always
keep a backup of every file, because diskettes go

4.2

bad cccasionally. The File Manager DUPLICATE
command is used to back up a file (Chapter 5).

A diskette is divided into sectors. There are 616
sectors on each diskette. One sector will hold
approximately 20 average lines of text. The diskette
directory requires at least 8 sectors of its own. The
File Manager DIRECTORY command can be used
to list the size of each file (Chapter 5).

The PDS disk file manipulation routines will
generate error messages when certain conditions
occur. A file error message has the following
format:

DISK ERROR, FILE filename

error message 1
[error message 2]

Table 4.4 is a list of the error messages and their
meanings. Normally only the first nine messages
given in the table will occur. In some messages
there is no filename involved, in which case only
“." will be printed for the file name. Sometimes
two error messages will be printed.

7 Table'd.d_.' Disk File Error Messages

Message Meaning
WHONG DISK VOLUME User reierred to a file on a diskette other
- than the one in the drive.

DHV NQT BI?Y No disk in drive, drive door isn't shu(or
R disketle is jammed.

‘FILENAME SYNTAX Us-v 1yped an illegal filename.

END OF FILE Lser tried 1o read past the end of the file
G : - while using the text editor.
END OF DISK Diskette is ful! no more data can be

- stored on it. See warning in Chapter 7
e ~ congerning this error.
CANT DEL_'ETE : * Attempt to delete a file whose protect
5 o ~ level is 3, or user didn't give permission
_to delete a file whose protect level is 2.

ILLEGAUDEVICE User reférred'to an illegal device.

FILE NOT FOUND Fleferen::e was made to a file that is not
G T on the diskette.

NO SYNC/WRT PRTCT A!ternpt to write on write-protected

diskette, or else disk is bad.

WRT GBC ERR & C_cuidn’t write on disk, disk .may be bad.
RD CRC ERR Couldn’t read from disk, disk may be bad.
CANT RD NST: Drive not ready or disk is bad.

Diskette is full, no more data can be
~ stored on it. See warning in Chapter 7
concerning this error.

DISK/DIR FULL

CANT RD DIR
CANT WRT NST
CANT WRT DIR

Drive not ready or disk is bad.
Drive not ready or disk is bad.
Disk may be bad.

RD ERR Disk is bad.

WRT ERR Disk is bad.

CANT MODIFY Attempt to modify a file whose protect
level is 3, or user didn’t give permission
to modify a file whose protect level is 2.

ADDR ERR System hardware or software errer,

ILLEGAL CMD System hardware or software error.

Table 4.4. Disk File Error Messages {(continued)

Message Meaning

NO DISKIO ERRS

NO ERRS

NOT OPEN FOR RD
NOT OPEN FOR WRT
NOT OPEN FOR MOD
ALREADY OPEN

TOO MANY FILES

System hardware or software error.
System hardware or software error.
System hardware or software error.
System hardware or software error.
System hardware or software error.
System hardware or software error.
System hardware or software error.
NST/DIR DONT MATCH System hardware or software error.
PAST END OF DIR
BAD CHNL TBL

NO END OR DIR

TOO MANY VOLUMES _ System hardware or software error.

System hardware or software error.
System hardware or software error.

System hardware or software error,

In a few system commands a “device name” is
acceptable in place of a filename. A device name is
specified by an asterisk followed by two alphabetic
characters indicating a peripheral device. At
present, only two device names are allowed. These
are shown in Table 4.5.

Table 4.5. PDS Device Names

Device

Name
*CN System Console
*PR Printer

4.2 PDS Commands

All PDS system programs print a “‘sign-on’’ line
when they are called by the user. When a system
program is ready to accept a command from the
user, it issues a “prompt.” Each PDS system
program has a unique prompt. Table 4.6 lists these
programs and their prompts. The prompt indicates
to the user that a program is ready to accept a
command. Each system program has its own set of
commands. Chapters 5 through 11 of this manual
describe these programs and their commands.

Table 4.6, PDS System Program Names and Prompts

System
Program
Name Function Prompt
ASM* COP macro assembler A
COPMON* COP monitor Pl
DSKIT* Disk initialization and test D>
EDIT* Text file editor E>
FM* File manager program Fz
LIST® Text file listing >
XREF* COP program cross reference R>
EXEC"*

PDS executive program x>

“System Program on Mastar Diskette.
"*System Program in Firmware.

4-3

To invoke a command, the user types the command
name and operands on the console, followed by a
carriage return Only the first two characters of
the command name need be typed — characters
following the second character are ignored. Many
commands require only the first character to invoke
them,

Some commands require operands. An operand is
typed by the user on the same line as the
command name but separated from it by one or
more spaces. If there is more than one operand,
they are separated from each other by commas or
spaces, depending on the command.

Every command line must be terminated by a
carriage return before PDS will perform the
command.

In this manual each command will be described by
giving its syntax, a description, and an example.
Syntax refers to the type of operands that the
command requires. Below is an example of a
typical command description:

COMBINE Command —

Syntax:

COMBINE filename,filename [filename ..] TO filename

Description: Combine the specified files into a new
file with the given name. Files must be
of type Symbolic.

Example:

F>C TEST1.SRC.TEST2.SRC,TEST3.SRC TO NEW.SRC
CREATING FILE CDS:NEW.SRC

Following “Syntax:” the command name
(COMBINE) is given with the first one or two
characters (C) underlined to indicate how many
characters are necessary to invoke the command.
Following the command name are the operands.
The meaning of the operands is in most cases
obvious. Here, for example, “filename” refers to a
PDS filename, described earlier in this chapter. If
the meaning of the operands is not obvious, they
will be described in the “description.” Brackets ([])
around operands indicate that the operand is
optional and may be left off. If the reason for an
optional operand is not obvious, it will be described
in the description. Here, for example, it is obvious
that if a third initial filename is given, it will also be
included in the combined file. The ellipsis (.. .)
indicates that an operand may be repeated several
times. Capital letters such as “TO” in the operand
field indicate that these letters are to be typed
exactly as they are.

Following “Example:" are the program prompt
characters (F>) and an example of the command,
entered by the user.

Command characters typed by the user are
UNDERLINED UPPER-CASE characters. Characters typed
by PDS are non-underlined UPPER-CASE characters.
Lower-cage characters auch as range 6F fllename
represent ranges of values or names selected and
typed by the user. Comments appearing in the

normal text typeface are explanatory only and are
not part of the actual programs.

In some command descriptions one or more letters
will be circled. This represents a control character.
For example, represents a carriage return.

4.3 System Initialization

When PDS is powered up using the front panel key
switch, or initialized using the front panel “INIT”
switch, it displays

[

on the front panel display and waits for the user to
press the ‘‘carriage return” key on the system
console. When the user presses this key, PDS
determines the console baud rate and type (RS232
or current loop). Note that if the console uses a
current loop interface, PDS will assign it to a baud
rate of 110 with the following setup characteristics:
8-bit data (No Parity — PDS resets bit 8 =0), 2 Stop
bits, Full Duplex operation. If the peripheral is to be
set up differently, the user must follow the @ with
an @ @CONSOLE System Command to define the
setup parameters of the current loop console. (See
Section 4.6.) It then responds with:

EXEC,REV:A
x>

This indicates that the PDS “executive program” is
ready to accept a user command. The executive
program, named EXEC, is a firmware program
responsible for initializing various PDS parameters
when the system is powered up. The first line of
the response is called the “sign-on line,” and gives
the program name (EXEC) and revision level (A). The
second line gives the EXEC program prompt, “X>.”

If a system console is not available, some PDS
functions can be performed with the front panel.
The “INIT” button can be used to re-initialize the
system, in the same way as if power is turned off
and then on again. When LrP is displayed on the
PDS front panel during initialization, there are four
allowable responses by the user:

1. Press carriage return on the console for
normal console operation.

2. Press the “MONITOR"” switch to load COPMON
from disk. (See Chapter 9.)

3. Press the “TESTER” switch to load COPTST
from disk. (COPTST is discussed in COP400 Chip
Tester Manual, Order No. 420305786-001.)

4. Press the "DIAG” switch to perform a seven

minute PDS diagnostic test (described in Section
4.4 below).

4.4 Diagnostics

The PDS executive program EXEC has only a single
command. This command causes a PDS diagnostic
test to be performed:

Syntax: DIAGNOSE

Description: A seven minute memory diagnostic
test is performed by PDS, followed
by a brief disk drive test. If the
memory test passes, the message:

MEMORY TEST PASSED
is displayed on the console. If it
doesn’t pass, the incorrect memory
location will be displayed on the
console, (Servicing by National will
be necessary.) An initialized disk
must be inserted in the disk drive
for the disk test to succeed. If it
does, the message:

DIAGNOSTICS PASS
will be displayed on the console. If
not, the message:

DISK TEST FAILED
will be displayed.
Example: X>D

DIAGNOSTICS PASS

As discussed previously, the diagnostic test may
be performed, if a console is not available, by
pressing the front panel “DIAG"” switch. If the
memory test (which takes about seven minutes)
fails, the fail address will be given in the left side
of the front panel display, and the test type
(address, word, or bit) will be given in the right side.
If this occurs, servicing by National is necessary. If
the memory test passes, the disk test will be
performed. As with the console diagnostic
operation, it takes only a few seconds and requires
that an initialized diskette be in the disk drive. If
this test fails, diSC ErrS will be displayed on the
tront panel. If both tests pass, dif9 PASS will be
displayed on the front panel.

After diagnostics have been performed, the user
can return to conscle operation by pressing
SFUNC C TERM on the front panel keypad. This will
cause re-prompting for a console carriage return

(Cre).

4.5 Console Input

PDS uses a console input routine which has
several features that allow the user to correct
typing mistakes. Among the features are the ability
to backspace and to abort a line using control
characters. Table 4.7 describes the various control
characters and their function. These control
characters can be used at any fime when the user
is typing on the PDS console. If a hardcopy console
is being used, most of the control characters will
not be useful because of the inability to back up
and change characters that have already been
typed. However, the shift/O, control/Q, control/l, and
carriage return characters will be useful.

Table 4.7. PDS Console Input Control Characters

Character

ControliH

Shift/o

Function

Backspace 1 character but do not delete
the character that is backspaced over.

Delete one character back

(=" on some TTYs)

ControliQ

Carriage return

ControliT or Gontrol/l

ControliX

ControliL

ControliA

ControliB
ControliF
ControliC

ControliD -

ControllE

ControllS

Control/O or Control/Z

Control/P or Controt/\W

Abort line and try again.

Ling is completed. Must be entered at
end of each line.

Tab. {(See @ @ TAB Command for setting
tabs.)

Delete character at current CRT cursor
- position.

Forward space one character:

Insert characters before current cursor
character.

Backspace one word
Forward space one word

Forward space to third tab position (far
comments).

Same as carriage return excepl line is
truncated at current cursor position,

Forward space to end of line.
Backspace to start of lina.

Forward space to next occurrence of next
character typed. ;s :

Forward space one character beyond next
- occurrence of next chara:terty{:ed.

Note: It no characters have been typed yet on a line, farward
spacing will space over the last line typed, a useful means of
repeating the last line. If the |ast line ended in " *PR, it will not
appear on the repeated ling: 2

4.6 PDS “System” Commands

Certain PDS system parameters can be changed by
the user with “system” commands. A system
command is invoked by typing “@ @' followed by
a command name and operands and may be
entered at any time (while in any system program).

@ @CONSOLE Command

Syntax:
Description:

Example:

@ @CONSOLE baud[type[.parityl,crdly[{dIyIl]]
Set console parameters. Baud must
be one of the baud rates given in
Table 2.1. Type must be an "“R” for
RS232 or a “C” for current loop
console. Parity must be “E” for
even parity or “N” for no parity.
Crdly must be a number from 0 to
1000 representing carriage return
delay in milliseconds. Lfdly is for
line feed delay. Default parameters
are RS232, no parity, zero delays.
Console parameters are
automatically set up when is
typed at PDS initialization.

X>@ @G 1200,R,N,10,5

4-5

@ @PRINTER Command

Syntax:
@ @ PRINTER baud [,type[.parity[,crdly[,Ifdly [#fdiy[,vtdiy]]ll]]

Description: Set printer parameters. Parameter
description and defaults are same
as for @ @CONSOLE command,
except that form feed and vertical
tab delays are added. At system
initialization time, these parameters
are set to 1200 baud, RS232, no

parity, zero delays.
Example: X> @ @P 110,C,E,20,20,500,100

@ @TAB Command

Syntax: @ @TAB [t1.[12[ta]]]

Description: Set tab columns for controlT or
control/l input line control
characters. Three tab columns can
be set. Initial and default tabs are
columns 9, 17, and 33, standard for
COP400 programs.

Example: X>@@T 10,20,30

@ @WIDTH Command

Syntax: @ @WIDTH number of columns

Description: Set Printer and Console column
width. At system initialization this
parameter is set to 72. Minimum
setting is 10, maximum setting is
80.

Example: X>@ @WI 80

4.7 Printer Output

IF a PDS command line has “*PR” at the end of it,
PDS will direct output generated by that command
to the printer. This can be done with any PDS
system program command. If a printer is not
connected to the system, PDS will wait until one is
connected. The system must be re-initialized to
terminate this “wait” state.

Example:
F>G TEST1.5RC,TEST2.SRC TO TEST3.SRC *PR
CREATING FILE CDS:TEST3.SRC (This line is printed on
the printer.)

4.8 PDS System Software

PDS is shipped from the factory with two diskettes,
labeled **PDS MASTER.” The PDS MASTERS
contain all PDS system software. They are
identical, to be used to create a new master if the
old one is inadvertently destroyed. The MASTER
disks contain the PDS system program files, of
which there are currently seven. Figure 4.6 lists the
names of these programs (marked with an asterisk,
"*) They are used to perform the following
functions:

. Disk file management
. Text file editing

. Text file assembly

. Object code execution

[L o A

. Miscellaneous functions

Disk file management involves copying files,
duplicating diskettes, deleting files, listing diskette
directories, etc. This is accomplished with the file
manager program (FM), discussed in Chapter 5.

Another disk file function is the "initialization™ of
new diskettes, accomplished with the disk
initialization and test program (DSKIT), discussed
in Chapter 6.

Text file editing involves creation of text programs
and altering, inserting, and deleting lines within
such files. This is accomplished with the text editor
program (EDIT), discussed in Chapter 7.

Text file assembly involves the the translation of a
program written in COP400 assembly language into
a COP400 machine code file. This is accomplished
with the COP CROSS assembler program (ASM),
discussed in Chapter 8.

Object code execution involves loading PDS shared
memory with a COP400 machine code file, starting
COP execution, tracing program flow, and
examining COP registers. This is accomplished
with the COP monitor program (COPMON}),
discussed in Chapter 9.

Miscellaneous functions include listing text files,
cross referencing COP programs, and programming
PROMSs.

To call a PDS system program, the user must first
insert the diskette containing the program into the
disk drive. This is done by pushing the rectangular
“door-open’’ button to open the drive door (if not
already open) and sliding the diskette into the
drive, making sure that the index hole is facing

4.6

outward and slightly upward. (See Figure 4.1.) As
the disk is pushed in, a slight pressure will be felt.
Keep pushing until a click is heard and the diskette
hits the rear of the guidance track, then shut the
drive door. When handling diskettes, be careful not
to touch the exposed magnetic surfaces.

A small slot on one end of the diskette is used as a
write protect. To write data onto one of these disks,
a metallic sticker provided with the diskettes must
be placed over the slot.

While the disk drive is accessing the disk, the red
light in the center of the rectangular door open
button will be on. Do not open the drive door while
the light is on. Doing so may ruin the diskette.

Having inserted the disk into the drive, any PDS
system program can be called by typing:

X> @ name

on the system console. “Name” stands for one of
the system program names given in Table 4.6
(marked with an asterisk). When the program is
finished loading, it will print the sign-on line and
prompt the user for a command. At that time, any
valid command for that program can be entered.
Also, any other system program can be called by
again typing the “@name” command. (To call
EXEC, the user may type only an “‘@,” not
“@EXEC”).

After becoming familiar with the system program
commands by reading the rest of this manual, the
user is ready to begin working with PDS. The
system verification procedure provided in Section
3.2 is a test to verify that PDS is working properly,
and is also a handy way for the user to get a feel
for using PDS. The verification procedure includes
initializing a diskette with DSKIT, copying files to it
with FM, creating a COP400 program file with EDIT,
assembling the COP program with ASM, and
tinally, executing the COP program with the help of
COPMON.

File Manager Program

(FM)

The File Manager (FM) is a PDS system program
that provides the user with an interface to disk
files. FM enables the user to copy files, delete and
undelete files, list the disk directory, duplicate
disks, list file size and type, list space available on
a disk, list and change the disk name, and perform
various other functions. This chapter will describe
the File Manager commands and give examples of
their use.

To call FM, the user types in the @ command:

X>@FM
FM,REV:B
Fax

After FM prompts for a command (F>), the user
types in the necessary FM commands. These
commands are summarized in Table 5.1. In
commands that require a filename, if the file
modifier is not specified on a filename that is to
the left of “TO,” FM will use “SRC” for the detault
modifier. If a file modifier is not specified on a
filename that is to the right of “TO,” FM will use
the same modifier as it used for the filename to the
left of “TO."

5.1 COMBINE FILES Command
Syntax:

COMBINE filename,filename[filename . ..] TO filename

Description: Combine the specified disk files
and save the new disk file with the
specified name. All of the disk files
must be of the symbalic (SYM) file
type.

Example:

F>C FILE1.SRC,FILE2.SRC,FILE3.SRC TO TEST.SRC
CREATING FILE PDS:TEST.SRC

5.2 COPY FILE Command

Syntax: COPY filename TO filename

Description: Copy the specified disk file to a
new file an the same diskette, thus
creating duplicate files with two
different names.

Example: F>C FILE1.SRC TO SAMPLE

CREATING FILE PDS:SAMPLE.SRG

Table 5.1. File Manager Command Summary

Command Syntax

COMBINE FILES

COPY FILE G filename TO filename
DELETE DE filenamel filename]
DIRECTORY D [option[.option . .]}

DUPLICATE FILE

DUPLICATE VOLUME DU volume TO volume

HEADER H [*header string"]
LOCATE L filename
PACK FILE P filename
PACK VOLUME P
PROTECT PR filename [.plevel]
RENAME R filename TO filename
SPACE S
UNDELETE U filename
VOLUME V ["volume™]

C filename filenamel filenarme ..] TO filename

DU valumefilename TO volume:filename

Description ¥ Page
Combine symbolic files into a new file 51
Copy file with first name to a new file with the 5-1
second name.
Delete files on diskelte. 5-2
List the diskette directory. 52
Capy file from one diskette to a second 52
diskette.
Copy all files on one diskette to a second 52
diskette
List or change diskette header. 53
List file type, number of sectors, protection 53
level, and version number.
Remove deleted files of the given name from 53
the diskette directory.
Remave all deleted files from the diskette 53
directory.
List or change file protect level, 53
Renamae file. 5.3
List number of bad, used, and available sectors 53

on the diskette.
Undelete file. : 53

List or change diskette volume name. 53

5.3 DELETE Command
Syntax: DELETE filenamel[.filename . . .]

Description: The specified files will be marked
as deleted. After a file is deleted, it
remains on the disketie and its
name appears in the diskette
directory with an asterisk beside it.
It can be undeleted using the
UNDELETE command, until the
diskette is “packed” using the
PACK command. If the user tries to
delete a file whose protect level is
2, he will be queried as to whether
or not he really wants to delete it.
The user will not be allowed to
delete a file whose protect level is
X

Example: F>DE TEST.SRC, SAMPLE.MP
CANNOT DELETE FILE PDS:TEST. SRC
(protect level 3)
OK TO DELETE FILE PDS:SAMPLE.MP
(WN.CR:YES}’?

5.4 DIRECTORY Command
Syntax: DIRECTORY [option[,option ..]]

Description: List the diskette directory. One or
both of the following options may
be specified, separated by commas.
Option A — List files in
alphabetical order. Otherwise, the
list is done chronologically.
Option S — A “'short” listing is to
be made, excluding deleted files,
file IFT, version number, file #, and
the number of bad, used, and
available sectors on the diskette.

Example: F>DA

DIRECTORY FOR:MASTER “PDS MASTER DISKETTE™

FN D NAME TYRE SIZE- SRR NN
2 EDIT .MP MAIN PROGRAM 20 3 1
1 LIST MP MAIN PROGRAM 8 3
SECTORS BAD: 0

SECTORS USED: 36
SECTORS FREE: 580

The first line in the above printout shows the
diskette volume name (MASTER) and header (PDS
MASTER DISKETTE).

The FN column is a chronclogical numbering of the
first 99 undeleted files. In the unlikely case that
there are more than 99 files on the diskette, the FN
tield will be blank for these files. The FN number,

5-2

or F#, can be used to load a COP400 load module
file into shared memory using the front panel. (See
Chapter 9.)

The D (Delete) column denotes a deleted disk file
with an asterisk preceding the file name.

The NAME column is an alphabetical list of the file
names and modifiers.

The TYPE column indicates the file's Internal File
Type (IFT).

The SIZE column indicates the number of sectors
occupied by the file.

The PL column indicates the protection level.
The VN column indicates the file version number.

The sum of the bad, used, and free sectors account
for the total number of sectors on a diskette (6.6).
Sectors used indicates the number of sectors
occupied by the files, plus a minimum of 8 sectors
required by PDS.

5.5 DUPLICATE FILE Command

Syntax:
DUPLICATE volume:filename TO volume:filename

Description: Copy the file on the first volume to
a new file on the second volume.
The volume name must be specified
as part of the filename, and the two
volume names must be different.
FM prompts the user to exchange
diskettes in the disk drive as
required to complete the transfer.
The user must enter after each

prompi.tnsiead of . will

abort the duplication.

Example: F>DU VOL1:TEST.SRC TO VOL2TEST.SRC
LOAD INDICATED VOLUME, PRESS GR
vOL1
voL2
GREATING FILE VOL2:TEST.SAC
voL1 (GR
voL2 (CR
DUPLIGATION COMPLETE

5.6 DUPLICATE VOLUME Command
Syntax: DUPLICATE volume TO volume

Description: Copy each undeleted file on the
first volume to the second volume.
The two volume names must be
different. FM prompts the user to
exchange diskettes in the disk drive
as required to complete the
transfer. The user must enter
after each promm.instead
of wLII abort the duplication.
This command provides a means for
making backup copies of diskettes,
a recommended procedure. As
many as 20 or more swaps may be

Example:

needed to duplicate diskettes that
have many files or large files on
them. The first volume that FM will
request to be loaded is the second,
or destination volume. This allows a
“cleaning up” operation to be
performed on it.prior to the
duplication in order to improve the
diskette's access time.

F>DU VOL1 TO VOL2

LOAD INDICATED VOLUME, PHESS
voLz GR)

VOL1(GhH)

voL2 CR

CREATING FILE VOL2:FM.MP

vOoL1

voL2 (CR

CREATING FILE VOL2:EDIT.MP
DUPLICATION COMPLETED

5.7 HEADER Command

Syntax:

Description:

Example:

HEADER [*header string™]

If the header string is left off this
command, the header of the
diskette will be listed. If the header
string is included, the current
diskette header will be changed to
this new one.

F>H “MY COP PROGRAMS”

5.8 LOCATE Command

Syntax:

Description:

Example:

LOCATE filename

List the file type, total sectors
occupied, protection level, and
version number of the specified file.

F>L TEST.SRC

FILE TYPE SOURGE
TOTAL SECTORS 16
PROTECTION LEVEL 3
VERSION NUMBER 10

5.9 PACK FILE Command

Syntax:

Description:

Example:
F>P TEST.SRC

PACK filename

All deleted files of the given name
will be removed from the directory.
The file can no longer be undeleted.
Disk space that was occupied by
the file is freed for use by other
files.

PAGKING FILE PDS:TEST.SRC (Y/N,CR = YES)?

5.10 PACK VOLUME Command

Syntax:

Description

PACK

All deleted files on the diskette will
be removed and can not be

5-3

Example:

undeleted. Disk space that was
occupied by the files is freed for
use by other files.

F>P.
PACKING DISK (Y/N,CR = YES)?

5.11 PROTECT Command

Syntax:

Description:

Example:

PROTECT filename [,plevel]

If the protection level is not given,
the protection level of the file will
be listed. If the protection level is
given, the file protection level will
be changed to the new one.

F>PR TEST.SRC,3

5.12 RENAME Command

Syntax:
Description:

Example:

RENAME filename TO filename
Change the name of a file.

F>R TEST.SRC TO TEST.OLD

5.13 SPACE Command

Syntax:

Description:

Example:

SPACE

List the number of bad, used, and
available sectors on the diskette.

F>8

VOLUME:MASTER

SECTORS BAD: 0
SEGTORS USED: 140
SECTORS FREE: 476

5.14 UNDELETE Command

Syntax:

Description:

Example:

UNDELETE filename

Restore the most recently deleted
version of the specified file and
delete the existing one (if any). If no
deleted version exists, the following
message is displayed:

NO BACKUP EXISTS
If there are more than one deleted
files of the same name, they can be
successively undeleted and
renamed, one at a time.

F>U TEST.SRC

5.15 VOLUME Command

Syntax:

Description:

Example:

VOLUME [“volume name’]

If the volume name is left off this
command, the volume name of the
diskette will be listed. If the volume
name is included, the current
diskette volume name will be
changed to the new one. The
volume may consist of one to eight
alphanumeric characters.

F>V “PDS"

Javig

b TTTITOUN-05E

e

et iy ol

e b woiewal a0l 0%

Disk Initialization
and Test (DSKIT)

DSKIT is a PDS system program which allows the
user to “initialize™” new diskettes. Initialization
consists of the following three operations:

1. Write “sector sync marks” on each of the disk’s
616 sectors. This operation requires
approximately 1 minute.

2. Write and verify a test pattern in each of the
sectors, in order to detect bad sectors. This
operation requires approximately 20 minutes.

3. Write the diskette “volume name” and “header”
onto the disk, and create an empty directory.
This operation requires approximately 10
seconds.

These three operations can be performed with the
INITIALIZE command. Although the user will
probably not have use for any of the other DSKIT
commands, they are described here for
completeness.

Command - s'ym“: o
ADDRESS TEST A setrange [aopt ..]
BAD SEGTORS - a8

CLEAR : : . C ;
DIRECTORY. D voiume theader
DUMP SECTOR ‘DU sctrange:
INITIALIZE iy “olime “header!

PATTERN TEST
SECTOR MARKS - S |trirange]
STATUS : ST‘
TEST SECTOR

P sclrange |popt . .]

T sector [topt ..]

sector = i:i=
track thm
sctrange i:=
frkrange ::=
volume . ::=
header ::=
aopi' A
popt” e

topt* =

To call DSKIT, type:

X DSKIT
DSKIT.REV:B
D>

DSKIT is then ready to accept one of the
commands listed in Table 6.1 and described in
detail below.

6.1 INITIALIZE Command

S\jﬂtax: ANITIALIZE "volume”,"header"

Initialize the diskette that is
currently in the disk drive, giving it
the specialized volume name and
header string. The volume name
consists of one to eight
alphanumeric characters. The
header string consists of one to

Description:

:I)SKI;F f:p_mn‘_t'a 1d ZSUm'riia_}y :

. Description . Page

: iTe.st Et:a.pa:b'i\ily' to: ac.ces:s sectors in gwén range. 62
- F'ri-nt:é_eetcr' r'\u_rﬁh'ers of bad s‘ec.tors. LB
Clear re,:-s;.;us of previous tests. : B2
 Build an empty directory. 62
'Pr‘:mi contents of .g‘wen range. : e 62
. Initialize diskstte ey
: _Te;al sectors in given range. - 6-2
Write seclo.r rr:marks_nn giveh track range. B3
Print drive status. 6-3
i .Test individual sector. : 63

- hex number from 0:to X 267
hex number from 0 1o X'4C
" sector {{sector]
track [itrack]
one to eight a}phanun;ne'rlc characters
one to forty éharacte!s
CO. NE
CO. ND. NE, PA, RO, RW, WO
€O, PA. RO. RW, WQ

“See Table 6.2 for a definition of these options.

6-1

forty characters of any type. The
system will query the user regarding
initialization of the diskette before
beginning the operation.

Example:
D>| “COPS ","COP PROGRAMS"
OK TO DESTROY VOLUME “MASTER" (Y/N,CR = YES)? N_
(user forgot to put correct disk in)
D>1 “COPS”,"“COP PROGRAMS"
OK TO RUN DESTRUCTIVE OPERATION ON DISK (WN‘CFI:YES}?
***SECTOR MARKS COMPLETE""* =
***PATTERN TEST COMPLETE"**
DIRECTORY COMPLETE
***INITIALIZATION COMPLETE"""

6.2 ADDRESS TEST Command

Syntax: ADDRESS sctrange [aopt . .]

Description: Test the addressing ability of the
disk head. All sectors in the
specified range (sctrange) are
written in descending sequence
with their sector addresses during

Pass 1, then verified during Pass 2.
Valid Options: co, NE

Example:
D>A 0/267
READY TO RUN DESTRUCTIVE OPERATION ON DISK {Y/N.CR =YES)?
ADDRESS TEST COMPLETE

Table 6. 2. DSKTT Ccmmand Ophon De&crlphoh

'- Optlon :

co —f'Conjt.inubus Té_sl o :

ND — Non Destructive Test ~ Save ongmal data befors the test
R e © is begun, and restore data alte e
the test haa ended

" NE — No. Error Messages 'Suppress ertor messages

 Write a- specx!led pauern up to

~ four hexademmal dlgns) on one or-
‘more sectors. More than one’

: panern may be specified.

PA — Pattern V‘alua

Read nreuscuslv written pattem 1o
‘verify the data (¢nmanl‘,- used to
“test compatmrllty between 1w0 %

drives). :

RO — Read-Only T_es._t .

RW — Read/Write Test Write spaoih’ed pattam on each
sector, and Tea.d to venfy idetault

mode).

Write specified pattern on each
sec!or bul Go not read.

WO — Write-OnIy-Test

Note: RO, RW and WO are’ mulualiy excluswe ie, chy one can
be used within a given option declaration.

6-2

6.3 BAD SECTOR Command

Syntax: BAD

Description: Print the sector numbers of all
sectors that were found to be bad
by the tests that were run after the
last CLEAR, DIRECTORY, or

INITIALIZE commands.

Example: D>B

NO BAD SECTORS

6.4 CLEAR Command

Syntax: CLEAR

Description: Clear the results of all tests that
have been executed up to this point.
This command is performed
automatically upon completion of
the INITIALIZE DIRECTORY

command.

Example: D>C

6.5 DIRECTORY COMMAND

Syntax: DIRECTORY “volume”,“header"

Description: Build an empty directory based on
all information gathered in any
preceding test. This operation
should be performed after any

sector tests.

Example: D>DI “MASTER","PDS MASTER DISKETTE"

**DIRECTORY COMPLETE"""

6.6 DUMP SECTOR Command

Syntax: DUMP sctrange

Description: Print the contents of the specified
sector range in hexadecimal with
the equivalent ASCII values.

Example: D>D 2121267

6.7 PATTERN TEST Command

Syntax: PATTERN sctrange [popt . .]

Description: Test all sectors in the specified
range. In the normal default RW
(Read/Write) Mode, each sector is
written with the specified pattern,
then read to verify the data. A total
of five patterns may be specified
with the PA option, though only one
pattern may be specified during RO
(Read-Only) or WO (Write-Only)
tests. If the PA option is not
supplied, the pattern E5E5 is
assumed.

Valid Options: CO, ND, NE, PA, RO, RW, WO

Example: D>P 0/267 ND PA = AAAA PA = 5555

“"PATTERN TEST COMPLETE***

6.8 SECTOR MARKS Command

Syntax:

Description:

Example:

SECTOR [trkrange]

Write the sector address marks for
a new diskette. This must be
followed by a PATTERN TEST
command over the specified range
of the diskette. The final command
in this initialization sequence is
DIRECTORY.

D=5 0/4C
“**SECTOR MARKS COMPLETE***

6.9 STATUS Command

Syntax:

Description:

Example:

STATUS

Read sector 0 of the disk and print
the resulting disk status. The status
is given as four hex digits. The left
byte is the number of errors
encountered and the right byte
indicates the type of error, as
follows:

Right
Byte Description
X1 No error detected

X2 Drive not ready

X'4 Addressing error

X'8 Missing syncl/write protect
X'10 Write error, CRC doesn't verify
X'20 Read error, CRC doesn't verify
X'40 lllegal disk command

D>ST
DISK STATUS:0001

6.10 TEST SECTOR Command

Syntax:

Description:

Valid Options:

Example:

TEST sector [topt . .]

Test a sector as in the PATTERN
command. This command is
normally used to test the disk drive
itself rather than the actual
diskette. If the PA option is not
supplied, the pattern E5E5 is
assumed.

CQ, PA. RO, RW, WO

D>T 23A WO PA = 3333

Text File Editor (EDIT)

The text file editor (EDIT) is a PDS system program
which allows the user to create and change text
files that may be subsequently used as source
code for assembling programs or as documentation
which may be updated. A variety of commands
allow the user to insert, delete, alter and list the
text, and to write text to a file on floppy disk. EDIT
can accept source from disk files or keyboard
input. Text entered goes into the edit buffer. The
edit buffer is part of the RAM reserved for system
programs in the PDS system, and will hold
approximately 800 lines of text. All commands with
the exception of a few miscellaneous commands
perform their operations on the contents of the edit
buffer. The easiest way of editing text is using the
disk edit mode. Disk edit mode allows the user to
specify a disk file name at the beginning of an edit
and have each subsequent READ or WRITE
command default refer to the specified file.

7.1 Disk Edit Mode

Disk edit mode is entered by using the EDIT
command and specifying an “edit input file”’ that
contains the source to be edited, and optionally an
“edit output file” that will contain the source after
it is edited. If an edit output file is not named, the
editor will replace the edit input file with the edit
output file when the disk edit mode is exited. If the
edit output file is named, the edit input file will not
be replaced.

Operationally, when the disk edit mode is entered,
the user reads a range of lines from the edit input
file to the edit buffer using an ADVANCE, READ, or
POSITION command. The user would perform his
edits on the lines in the edit buffer, then use
another ADVANCE or POSITION command to
automatically write the contents of the edit bufter
to the edit output file, clear the buffer, and read the
next range of lines from the edit input file. The size
of the edit buffer written back to the disk need not
be the same size as the block read into the buffer.
When the user has completed his edits, he would
close the edit input file and the edit output file
automatically with a FINISH or a TERMINATE
command. If the user wishes to abort the disk edit
mode he would enter an ABORT command.

In the disk edit mode, disk write errors will refer to
a file called "EDIT.SYT,” a temporary file for the
disk edit mode.

-

Figure 7.1 shows the operational sequence.

SOURCE FILE
i 0N DISK
TEXT IS HEAD
FROM THIS FILE EDIT INPUT FILE =

EDIT BUFFER
(PDS RAM)

TEXT IS EDITED
IN THE BUFFER

TEXT IS WRITTEN
70 THIS FILE

EDIT OUTPUT FILE f=—j

Figure 7.1 Operational Sequences of Disk Edit Mode

The edit buffer normally is large enough to edit the

average user's source files without difficulty.
However, using the “disk edit mode,” the user is

able to edit files larger than the edit buffer. In disk

edit mode the edit buffer is treated as an “edit
window.” (See Figure 7.2.) The edit window (in
memory) may advance through the text of the
source disk file. By using the disk edit mode, the

user is able to reposition large sections of text, and

. EDITINPUT FILE

EDIT BUFFER EDIT DUTPUT FILE
FIRST BLOCK
oF LINES [
EDIT
FIRST

BLOCK

INITIAL “"READ" OR “*ADVANCE™"

FIRST BLOCK OF

WRITE FIRST [outeuT FILE
SECOND BLOCK Lae{ pLOCK, EDIT
SECOND BLOCK
S
NEXT **ADVANCE™
FIRST BLOCK
OF OUTPUT

WRITE SECOND
Ho={ BLOCK, EDIT " [n-{ SECOND BLOCK

THIRD BLOCK
OF LINES Tl F OUTPUT

NEXT “‘ADVANCE"

FIRST BLOCK
WRITE THIRD
BLOCK, CLOSE
INPUT AND SECOND BLOCK

OUTPUT FILES

=={ THIRD BLOCK

“FINISH'" DR “‘TERMINATE "

Figure 7.2 Disk Edit Mode Edit Window Operator

easily edit source files much larger than the edit
buffer.

71

A warning has been inserted when the disk obviously
has no room left for the edit. Nevertheless, care
should be taken when editing to assure that there
is enough room for the new edit before continuing
or a disk error may occur resulting in possible loss
of a substantial portion or all of the edit.

When a write error occurs on the use of the
ADVANCE, FINISH, TERMINATE, or WRITE
commands, the input file is closed and the output
file is closed (if possible) and renamed RECV
(recovery). If this happens the user will be made
aware of it via a console message. The user should
immediately write the buffer to a DIFFERENT disk.
The bad disk should then be duplicated to a GOOD
disk and the old disk should either be discarded or
reinitialized. Now, between the original file, RECV
file, and the DIFFERENT file, reconstruction of the
edited file can be accomplished with the possible
loss of only approximately 20 lines.

7.2 Invoking EDIT

EDIT is a line editor, which means that the edit
pointer is positioned by line number. Line numbers
are assigned by EDIT, and are automatically
adjusted when lines are inserted or deleted. EDIT is
called from the disk with the “ @ command.

Example: X>@EDIT

EDIT,REV:B

E>
A common sequence of operations is to call EDIT
and then enter the disk edit mode.

X>@EDIT

EDIT,REV:B

E>E OLDFILE TO NEWFILE
AVAILABLE SECTORS: 294
INPUT FILE SECTORS: 12
E>

This may also be done on a single line.

Example:

Example: X>@EDIT OLDFILE TO NEWFILE
EDIT REV:B

AVAILABLE SECTORS: 294
INPUT FILE SECTORS: 12

E>

Table 7.1. Editor Commands
The following is a list of the edit command mnemonics and :
formats. All commands may be abbreviated to the first two
‘characters of the command word, and some commands may be
abbreviated to the first character only. The abbreviations are
indicated by an underline S o
An asterisk in front of a command indicates the command is
available only when the disk is inserted in the drive.

Parameters

Command Page
"ABORT 713
“*ADVANCE [range] 710
*ADVANCE string 7-11
ALIGN [range] [IN indent] [GO crange] 74
CHANGE string TO string [IN range [range . . JJ[N] 79
CHANGE crange TO string [IN range [range . .. JUINT 79
CLEAR 7-6
COPY range [TO ling] | LOTE
DELETE range [range .. J[L] 76

72

Table 7.1. Editor Command (continued)

Cnmr!'l'and Parameters Page
DELETE string [IN range [range . . .]| [L] 76
EDIT [range [range .. .]] [S] 7-8
EDIT string [IN range [.range . . J1[S] 78
*EDIT filename [TO filename] 712
*EINISH 713
INSERT [TO ling] 7-4
LIST [range [range ..]] [S] 74
LisT string [IN rangef,range . . J1[S] 75
MOVE range [TO line] 76
NEXT [iines] 75
*POSITION range 7-11
wjo_smou : string [FROM line] 7-12
READ. ' - [lines] : 7-7
_’EEAD : [range] FROM filename [TO line] 7-6
SCALE : 7-10
’I‘_ERMW}\TE : 713
' 'ERITE : [range [;range .. JI[TO filename] 77
WRITE 'sl.f_ing [IN‘range lrange . . JI[TO filename] 77

Table 7.2. Command Format Definitions

Symboll _ :
Notation: Definition .

column is used as a single column number in the range of 1 to
(column range) is defined as:
- column (icolumn)

crange

where the first column specified indicates the
be‘g‘inhi-ng af a column range and the second column
specified indicates the end of a column rangs. The
defauit for the second column is the last column of the
line.

~ Note: in the GHANGE command. if only the first column
is specified. it indicales an insert starting at that
column; : :
Note: The second column number must be equal to or
greater than the first column number.

device indicates an input/output device other tha_n the disk.

The legal device mnemonics are as follows:

Mnemonic Device
*CN
*PR

Console
Printer

filename indicates alegal disk file name. See Chapter 4 for a
: description of what constitutes a legal disk filename.

indent indicates the number of columns to indent the first line
of each paragraph in_a range of lines. {Used only in the
ALIGN command.}

line indicates the number of a line in the edit buffer. Line

may be entered as an integer in the range of 1 to 32,766
or as one of the following characters:

Character Buffer Line Indicated
B First line
i Previous line
i Current line
N Nexi line
E Last line

_ Note: The above characters may not be used in the
READ command as part of the range specification.

Table 7.2. Editor Command Format Definitions (continued)

Symboll
Notation Definition
lines indicates the number of lines to be read or the number
of lines to be listed. Lines is an integer in the range 1

to 32,766,

range is defined as:
line {line}
where the first line specified indicates the beg{nnmg
line of the range, and the second line specified
in_dicat-es the ending line of the range. |
: Examples: 10/50, FiL. P, Ni200, /L, 342
string is a string of 010 15 ASCHI characters: enclosed in
single or double quotes.
it the character string contains quotes (single or
double), then the quotes defining the character sirrng -
must be dlffefem 4
Examples: ¢ i
T.His'wo_ni\d_woqki
This would not work.
This would work. |
. This would not wark.

“memory's”
‘memory s’
%o line™
e (o

17 & {siash) is entered as shown between the beginning and
ending lines of a range or the bellnnmg and endmg
columns of a crange. :

{brackets) indicate the enciosed item or: mrms ﬁl“ﬂ
‘optional.

{ellipsis) mdlcaies that the prewous nems ma)r ba
- repeated if desi red .

' Tadhe .5 _Enp_é-mg;sagg:s :

ALIGN EHROR - STOP AT Lme number S
The length of 1he line the editor stopped at iﬁ greatar lhan the
maximum line width set or the cclumn range specified. Ekthe{
increase the line width er the ;}olumn range or make the line
shotter and re-al |gn therange.

BUFFER EM PTY
Auemmed 10 perform action on an emmy buffer Ll

3 BUFFEH FULL
- Attempted (o exceed the protective limit of the adit huﬁer (i e s
next line may exceed the maximom buffer. swze) :
- BUFFER FULL — CHANGE IGNORED

The arror message was caused by ona of tne fo!lowbng
operations:

1. “EDIT line” — buffer full after edit: changas .are |gnored
2. CHANGE command caused a buffer full (lines expanded)
current line {* L"} is next line to be changed.
BUFFEH FULL — STOP AT Iiﬂe niumber
Buffer expanded durmg ALIGN command, next line to be
aligned is shown. :
CANNOT DELETE OLD COPY OF OUTPUT FILE, NEW NAME:

Edited output file has file of same name at protection fevel 3,
nen-deletable, user must enter new name.

FILE ALREADY IN USE

Attemipted to read from or write to a file currently being used
as either an input or an output file in “disk edit mode.”
(“READ FROM file'' or “WRITE TO file.)

FILE DOES NOT EXIST

On an "EDIT filename TO filename’’ the f\rsl filename does not
exist.

Table 7.3. Error Messages (continued)

ILLEGAL COMMAND
Non-existent command used.

ILLEGAL OPERAND

The error message was caused by one of the following
operations:

1. lllegal operand.
2. Disk not available and using disk related commands
(“READ FROM file, WRITE TO file,” etc.).
LINE NUMBER BEYOND RANGE

In.the comma‘nd: “ADVANGE line [/line]" the lower line of the
range has already been brought into the edit buffer or written
out, and therafore is not on the disk.

NO INPUT FILE SPECIFIED
Aftempted to execute a "READ [lines]” when not in disk edit
mode and no input file specified.

NOT IN DISK EDIT MODE

The !ollowmg commands are not available when not in disk
- edit mode:

ABORT, ADVANCE FINISH; POSITION, and TERMINATE

NUMBER OVERFLOW
The error messaga was caused by one nf the following
operations:
i _The input number specified is greatar than 32,766.
2 The next input line wi'\l cause the text buffer to have a
ling number gremer than 32,767.
. The range oi lines to be copied will cause the text buffer
. 1o have a line number greater than 32,767.

A : . QUTPUT ALREADY HAS EOF
Dlsk error accurred when closing file.
Aliempted to execute ADVANCE, POSITION, READ, WRITE
aftera disk error on closing. Only valid commands are ABORT,
FENISH and TERMQNATE
- RANGE WILL NOY FIT
The | ramge «of lines to be copied will cause the text buffer to
excesd %he maxlmum buffer size.
: : UNABLE TO AGCESS FILE
‘The editor is_s unable to transfer control to the file specitied
because an illegal character has been detected in the filaname
specified
VOID:RANGE

: 'The lines references are not wﬂhm the boundaries set by the
specified ranges.

For any command which lists text, the output may
be interrupted by pressing any key on the console.

7.3 EDIT Command Mode

Edit commands are entered from the console. Text
may be entered from the console or from the disk.
The prompt

E>

indicates the editor is in “command mode” and is
ready to accept a new command. (The “disk edit”
mode Is used within and is a special version of the
command mode.)

The following command formats are listed
alphabetically in Table 7.1. The definitions used in
the command formats are listed in Table 7.2. Table
7.3 is a list of EDIT Error Messages.

7.4 Commands Within the Edit Window
(Buffer)

7.4.1 INSERT Command

Syntax: INSERT [TO line]

Description: The above command format
accepts text from the console
keyboard for insertion into the edit
buffer. The text is inserted before
the line indicated by the “TO line"”
option. If the “TO line” option is
omitted, the text is appended to the
end of the butfer. The prompt

line?

is given initially, and after each
carriage return. The line number in
the prompt is the actual number of
the line about to be inserted. The
insertion of lines causes all
following line numbers to be
increased by a number
corresponding to the number of
lines inserted.
If the line number of the insert is
greater than the last line of the
buffer, then the text is appended to
the end of the buffer. If the line
number of the insert is less than
the first line of the buffer, then the
text is inserted in front of the first
line of the buffer.
If a GontrolG)is entered in column 1
in response to the EDIT command
prompt, EDIT will enter the “insert
mode™ at the end of the buffer. If a
is entered in column 1 in
response to the EDIT prompt, EDIT
will enter the "insert mode’ at the
current line number as if the
command
I TO (current line)
had been entered. If aor
is entered as the first character of
an inserted line, the insert mode is
exited. If ais entered in any
other position, EDIT aborts that line
and prompts for it again. If a is
entered in any other position, it
signifies the end of the current
input line.

Examples:

1. Insert text before line 125.

E>I TO 125

1252 $BCDADD: RC

1267 JP___ ASTART

1277 $INC: sc €TRUQ) is the first

1282CTRUQ) # character of the line,
e echoed on the console

E> as a “#,” so insert mode

is terminated

7-4

2. Insert text before the current line.

E>1 TO

1287 LD

1297 JSR___ $BCDADD

1307 JSR $CSP _ (CTRUQ) made an
1307 JMP___ SDSPLY error.

1317 JSH__ SMPS

1327 (CTRUQ) #

E>

3. Insert text before the current line (enter input

mode).
E
1327 (ADD NEW TEXT)
1337 ‘(Exii input mode)
E>

4. Add text to the end of the buffer.

E>|

3497 (Text also may look like this. The text inserted is just
3507 standard ASCII characters.)

35172 CTRUQ)#

E> S

5. Add more text to the end of the buffer.

E>(CTRUO) # Enter input mode.

35172 The above command can be used to
3527 insert more text.
3532CTRUQ) # Exit input mode.

7.4.2 LIST Command

This command lists text from the edit buffer. The
lines are listed with their current line numbers. If
the "'S” (squash) option is included, the lines are
left-justified, and extra blanks (more than one) are
removed from between the words. The S option
affects only the listing, not the text in memary.

Syntax: LIST [range[range . .] [S]

The above command format lists a
range or ranges of lines. If the
range option is omitted, the entire
buffer is listed beginning at the first
line of the buffer. (In disk edit mode
the first line of the buffer is not
necessarily line 1 of the text.) “*PR"
at the end of the command line will
cause the listing to be sent to the
printer.

Description:

Examples:

1. List the first line of the buffer.

EsLF
1 .TITLE DEMO, 'SOFTWARE EXAMPLE'
B

2. List lines 43071435 on the printer.
E>L 430/435 PR

430 AISC 13 These lines are printed on
431 JB $DPINC the printer.

432 JMP K# Any key (K) terminates the
E» listing.

3. List the current position of the edit buffer.

BL.
432 JMP
E>

3DSPLY

4. List the first line, the previous through the next
line, and the last line.

E>LF, PIN, L

1 TITLE DEMO, ‘SOFTWARE EXAMPLE'
431 JP SDPING

432 JMP $AST

433 3 Comment Line.

168 END Start

5. List with and without the S option.
E>L 266/271 §

266 COMP; BY SETTING ALL TO ONES

267 XAS; GET CONTENTS OF S

268 COMP; S COUNTS DOWN, SO INVERT

269 SKGBZ 0; IF KEY DOWN

270 JP $NOHOLD

27 CLRA; HOLD COUNTER

E>L 266/271

266 COMP ; BY SETTING ALL TO ONES
267 XAS ; GET CONTENTS OF S

268 COMP ; S COUNTS DOWN, SO INVERT
269 SKGBZ o ; IF KEY DOWN

270 JP $NOHOLD

271 CLRA ; HOLD COUNTER

E>

Syntax: LIST string [IN range[,range . . .J] [S]

Description: The above command format lists
every line within the given range or
ranges in which the specified string
occurs. If no such lines exist, the
message

VOID RANGE

is printed on the console. If the
range is omitted, every occurrence
of the specified string will be listed.
EDIT will accept both upper- and
lower-case letters. However, the
user will normally use only upper-
case. Within the string, upper-case
characters and lower-case
characters are treated as the same
character. For instance:

ABC = ABc = Abc =abe = aBe =aBC = AbC
This feature is true for the LIST,
ADVANCE and POSITION
commands. In all other commands
that have the string option
(DELETE, EDIT, CHANGE, and
WRITE), the string must match
exactly.

Examples:

1. List all occurrences of .WORD in lines 100
through 400.

E>L “WORD' IN 100/400

283 WORD OFF

294 MEMORY: WORD 03F,06,05B,04F,066,06D,07D,07
358 CRDRDR: .WORD 07F,067,077,07C,039,07E,079,
Ex>

2. List all occurrences of the string RDBUF.

E>L "RDBUF"
VOID RANGE
Ex

7.4.3 NEXT Command

Syntax: NEXT [lines]

Description: The above command format lists
lines from the edit buffer. If the
number of lines option is given, the
listing starts at the next line and
continues until the given number of
lines is listed or until the end of the
buffer is reached, whichever occurs
first. If the number of lines option is
omitted, only the next line is listed.

Examples:

1. List the next line.

E>N This command is
103 CLRA equivalent to: LN
E>

2. List the next five lines.

E>N 5

104 SNHOLD:

105 LBl O,CNTR

106 JSR $BCDADD

107 K# Terminate the listing by
E> pressing any key.

7.4.4 COPY Command

Syntax: COPY range [TO line]

Description: The above command format copies
the specified range of lines and
inserts them before the line
indicated by the “TO line” option. If
the “TO line” option is omitted, the
copied lines are appended to the
end of the buffer. The copied lines
are not deleted from their original
location. The buffer is renumbered
after the copy.

Examples:

1. Copy lines 6 through 18 and insert them before
line 23.

E>CO 6/18 TO 23
Ea

2. Copy lines 100 through 120 and append them to
the end of the buffer.
E>CO 100/120
E>
NOTE: IF the editor is in disk edit mode and the
buffer begins, for example, at line 110, only lines
110 through 120 are copied.

7.4.5 DELETE Command

This command deletes lines of text from the edit
buffer and then renumbers the buffer. If the “L”
option is specified, the lines are listed on the
console as they are being deleted.

NOTE: If the “L* option is specified, striking any
key will abort the deletion of the current line and
any other lines that have not been deleted already.

The specific options for the delete command are
described below:

Syntax: DELETE range [range . . .] [L]

Description: The above command format deletes
the specified range or ranges of
lines from the edit buffer.

Examples:

1. Delete lines 94 through 98, 101, and 103 through
105.

E>D 94/98,101,103/105
Ec

2. Delete lines 203 through 206 and list the deleted

lines.

E>D 203/206 L

203 $DOT: XAS

204 COMP

205 SKGBZ 0

206 JP $NOHOLD

E>

Syntax: DELETE string [IN rangel.range . . J} [L]

Description: The above command format deletes
only the lines in which the specified
character string occurs. If no such
lines exist, the message

VOID RANGE

is printed on the console.
NOTE: Any character string found in
the text must match exactly the
specified character string.

Examples:

1. Delete all lines that contain the character string
RAMCLR. List all the lines.

E>D ‘RAMCLR' L

158 JSR SRAMCLR
170 JSR $RAMCLR
234 JSR $RAMCLR
282 JSR $RAMCLR
Ex,

7-6

2. Delete all lines that contain the character string
ABC from the range of line 100 through line 200.
E>D ‘ABC' IN 100/200

VOID RANGE
E>

—t

7.4.6 CLEAR Command
Syntax: CLEAR

The above command format deletes
all lines from the edit buffer.

Description:

Example:

Clear the edit buffer and check to see if it is
cleared.

E>CL

CLEAR CURRENT BUFFER (WN.CH:YES)?@

List the contents of
the buffer.

E-L
BUFFER EMPTY

E>

7.4.7 MOVE Command

Syntax: MOVE range [TO line]

The above command format moves
a range of lines and inserts them
before the line specified by the “TO
line” option. The lines are deleted
from their original location after the
move, and the text is renumbered. If
the “TO line” option is not
specified, the lines are appended to
the end of the buffer.

Description:

Examples:

1. Move line B to the end of the edit buffer.

E>M6
E>

2. Move lines 31 through 40 and insert them before
line 68.

E>M 31/40 TO 68
2

7.4.8 READ Command

This command reads text from a disk file into the
edit buffer. The text read is merged with any
existing text in the edit buffer and the buffer is
renumbered. If the buffer is filled during the course
of the read, the message

BUFFER FULL
is printed on the console and the command is
terminated. The buffer will contain text through the
last complete line read.

The specific options for the read command are
described below:

Syntax: READ [range] FROM filename [TO line]

Description: The above command format reads
the specified range of lines from
the disk file named to the edit
buffer and inserts them before the
line specified by the “TO line”
option. If a range of lines is not
specified, the active disk file will be
read until an end-of-file is detected,
or until the buffer is full. If the “TO
line” option is omitted, the text read
will be appended to the end of the
buffer. The characters “F," “P,” *.”,
“N,”” and “L” may not be used in
the range option for this command.

Examples:

1. Read the disk file named “UTILITY.”

E>R FROM UTILITY
EQF AT 246
E>

This read cannot be
terminated by console
input.
2. Read lines 206 through 350 from the disk file
named “LIST” and insert the text before line 128.
E>R 206/350 FROM LIST TO 128
E>

3. Read from the disk file named “TEST.” (The
editor is in disk edit mode and using “TEST.”)
E>R 100/200 FROM TEST
FILE ALREADY IN USE

E>

Syntax: READ [lines]

Description: The above command format reads
the specified number of lines from
the input file and appends them to
the edit buffer. If the number of
lines is not specified, lines will be
transferred until the edit buffer is
full or until an end-of-file is reached.
NOTE: The editor must be in disk
edit mode when using this
command format.

Examples:

1. Read the next 12 lines from the current disk edit
input file.

E>R 12

E>

2. Read the entire file.

E>R
BUFFER FULL The buffer filled
E> before the entire file

was read.

7.4.9 WRITE Command

This command writes text from the edit buffer to a
disk file. The specific options for the write
command are described below.

Syntax: WRITE [range ..] [TO filename]

7-7

Description: The above command format writes
arange or ranges of lines to the
disk file named by the “TO
filename™ option. If the range is
omitted, the entire edit buffer is
written to the disk file. If the “TO
filename” option is omitted and the
editor Is in disk edit mode, the lines
are appended to the current edit
output file.

Examples:

1. Write the entire contents of the buffer to the
disk file named “RESUME.”
E>W TO RESUME
OK TO DELETE PDS:RESUME.SRC (Y/N,CR = YES)?

There was an existing copy of
the file.

CREATING FILE PDS:RESUME.SRC
E>

2. Write the contents of lines 1 through 200 to the
disk file named “TEST 1.”
E>W 1/200 TO TEST1

CREATING FILE PDS:TEST1.SRC
E>

3. Write lines 152/393 to the current disk edit
output file. (The editor is in the disk edit mode.)

E>W 152/393
E>

4. Write lines 420/582 to the current disk edit
output file. (The editor is not in disk edit mode.)
E>W 420/582

NO OUTPUT FILE SPECIFIED
=

5. Write the contents of the buffer to the disk file
named “TEST1.” (Editor is in disk edit mode and
using “TEST1.”)

E>W TO TEST1
FILE ALREADY IN USE

E>

Syntax: WRITE string [IN range[,range . . .]] [TO
filename)

Description: The above command format writes

all the lines within the given range
or ranges of lines that contain the
specified character string to the
disk file named by the “TO
filename™ option. If the range
option is omitted, all lines that
contain the string are written to the
disk file. If the “TO filename”
option is omitted and the editor is
in the disk edit mode, the lines are
appended to the current edit output
file.

NOTE: All the character strings
found in the text must match the
specified character string exactly.

Examples:

1. Write all occurrences of the string XYZ to the
disk file “TEST2."
E>W'XYZ' TO TEST2

VOID RANGE
E>

None found.

2. Write to the current disk edit output file all the
lines, from line 168 to line 250, that contain the
string “DEV02." (The editor is in disk edit mode.)

E>W 'DEV02" IN 168/250
E>

3. Write to the disk file named “TEST" all the lines
that contain the string “ABCD.” (The editor is
not in disk edit mode.)

E>W ‘ABCD’
NO OUTPUT FILE SPECIFIED
E>

Table 7.4. EDIT Command Control Characters

Control

Character Description

CTRUA Followed by a character string and a carriage return
inserts the string after the CTRUA. A “<" is echoed
on the console for the CTRLUA.

CTRLU/B Backspace one word,

CTRUC Advances the carriage to the third tab setting without
changing any intervening characters in the line.

CTRUD Truncates the rest of the line from the current
carriage position.

CTRUE Advances the carriage to one column past the last
character of the current line, provided the position of
the last character is less than the width. Far example,
if the last character is in column 65, and the width is
72, then CTRL/E will move the carriage to column 66.

CTRUF Forward space one word.
CTRU/H Backspace one character.

CTRUI Advances the carriage to the next tab setting,
or changing any intervening characters in the line to
CTRUT spaces. Space one if past third tab.

CTRUL Forward space one character.

CTRUQ Aborts the current line madifications if entered in any
column position other than column 1. If entered in
column 1, CTRL/Q aborts the EDIT command and any
modifications to the current line

CTRUW Followed by any character, advances the carriage one
or column beyond the next occurrence of the specified
CTRUP character. If there are no occurrences of the character
before the carriage return, the carriage does not
move.

CTRUX Deletes the current character and echoes a "A" in ifs
place.

CTRUZ Foilowed by any character, advances the carriage to
or the column containing the next occurrence of the
CTRUO specified character. If there are no occurrences of the
character before the carriage return, the carriage does

not move.

CR (Carriage return} in column 1 terminates modifications
on the current line.

K (Any key) aborts the listing of the current line
SHIFTIO Backspace one character.

Underline Backspace one character.

7.4.10 EDIT Command

This command allows the user to edit a range or
ranges of lines. Within a line, characters may be
inserted, changed, or deleted; or the line may be
extended or truncated. If the range option is
omitted, the entire buffer is edited beginning at the
first line. If the ‘S (single) option is selected, there
will be no prompt for a second edit of the same
line. The control characters that may be used with
this command are shown in Table 7.4. They are
similar to the control characters described in
Chapter 4 for the general line input routine. The
line edit mode described here, however, is one of
the few times when the general line input

characters are not used.
Syntax: EDIT [range(.range . . .]] [S]

Description: The above command format edits a
range or ranges of lines.

Examples:
1. Edit line 179.

E>E 179

179 JRS _IFBYP :IF BYPASS

EDITS? JSR

179 JSR IFBYP ;IF BYPASS

EDITS? (in column 1 terminates the edit)

E> 1t Is necessary to
correct only as far as
the error.

2. Edit the buffer starting at the current line.

E>E L

451 LEI 1

EDITS? (GH) No edits to this line.
452 AIsC 9 9 should be changed.
EDITS? 9 Search for the 9.

EDITS? Alsc 9 Carriage stops at 9.
EDITS? AISC 5(CR) Correct the line.

52 Risc s

EDITS? No more edits this line.
453 LBl K # Abort the listing.

EDITS? # Abort the EDIT command.
3. Edit lines 120 and 121 using the S option.

E>E 120121 S

120 LBl 0,4 With the S option each
EDITS? LBl 1 line is presented for
121 alsc 4 _ editing only once.
EDITS? AISC 5(CR)

E>

Syntax: EDIT string [IN range[,range . . .]] [S]

Description: The above command format edits
all occurrences of the specified
character string within a range or
ranges of lines. The character string
searched for must match exactly
the character string specified. For
instance, to match “ABC" the editor
must find *ABC.” “ABc” would not
match.

Example: Edit all lines which contain the string
CARRY.

E>E ‘CARRY’
104 LBI 0, CARRY
Change CARRY to CRY.

EDITS? CTRUZ)A Search for an “A.”

EDITS? ~LBI 0, CA Carriage stops at A.
EDITS? LB 0, CA

EDITS? LBI 0,C Delete "AR” ("AA” are
104 LBI 0, CRY echoed back).

No more changes.

EDITS?

7.4.11 CHANGE Command

This command changes a character string or a
range of columns to a specified character string
throughout a range or ranges of lines. The altered
lines will be displayed on the consocle unless the
“N" (no list) option is specified. Pressing any key
will abort the change for the current line and the
remaining lines of the given range or ranges. The
specific options for this command are described
below.

Syntax: CHANGE string TO string

[IN range[,range .. .]] [N]

The above command format
substitutes the second character
string for the first character string
throughout the specified range or
ranges of lines. If no substitutions
can be made, the message

VOID RANGE

Description:

is printed on the console.

For a character string in the text to
be changed from the first character
string specified in the command to
the second character string
specified in the command, it must
match exactly the first character
string (i.e., “ABC" does not match
*abc”).

Examples:
1. Change the character string ABCD to 1234
throughout the entire buffer.

The editor did not find
any cccurrences of the
string ABCD.

E>G 'ABCD' TO ‘1234’
VOID RANGE
E>

2. Change the character string $3 to $N10 in lines
100 through 200.

E>L ‘$3' List all occur-
101 JP $3 rences of the
135 $3; LBI $BPI string $3.

172 JP $3

E>C ‘$3' TO ‘$N10" IN 100/200

101 JP $N10

135 $N10: LBI $BP|

172 JP $N10

E>

79

Syntax: CHANGE crange TO string

[IN range[,range . . .| [N]

The above command format
changes one or more columns to
the specified character string in a
range or ranges of lines. If “crange”
specifies a range of columns, then
the existing columns in that range
are modified. If “crange’ specifies a
single column, then the specified
character string is inserted starting
at that column.

Description:

Examples:

1. List lines 30 through 35, then insert “**" in
column 2 in lines 30 through 35.

E>L 30/35
W==================-=
31

32READ INSTRUCTIONS BEFORE

33 TURNING ON PROCESSOR.

34

32 **READ INSTRUCTIONS BEFORE
33 "*TURNING ON PROCESSOR.

2. Change columns 2 through 3 to ; in lines 30
through 35.

E>C 2/3TO ‘' IN 30/35
30;
Al
32 ; READ INSTRUCTIONS BEFORE
33: TURNING ON PROCESSOR.
34;

E

This command replaces the contents of column
2 and deletes the contents of column 3. The
remainder of the affected lines are moved one
column to the left.

7.4.12 ALIGN Command

Symax: ALIGN [range] [In indent] [CO crange]

Description: The above command format aligns
a range of lines on the columns
specified by the “CO crange”
option. If the second column
number of the crange is not
specified, it defaults to the width of
the line. If the “IN indent” option is
specified, the first line of the
paragraph (i.e., the next line after a
blank line) within the range of lines
is indented the number of columns
specified by “indent.” The first line
of the range is assumed to be the
start of the first paragraph.

Lines are added or deleted
whenever necessary, and the text is
renumbered when the align is
completed. One or more blank lines
defines a paragraph.

The ALIGN command removes
excess spaces within each
paragraph, even from within any
character string contained in the
paragraph. If there are one or more
spaces after the following
characters before alignment, two
spaces will follow each character
after alignment: =", =7, I HM9VEAY)
other characters will be followed by
a single space after alignment,
provided of course that they were
followed by at least one space
before alignment.

The listing of the range of lines that
were aligned may be aborted by
pressing any key.

This command is used primarily for
realigning documentation after text
has been added or deleted. The user
should be extremely cautious when
using this command since alf of the
text within the range is aligned
before any lines are listed. If
incorrect numbers are given, the
user could align areas he had no
intention of aligning. It would be
advisable to practice using this
command before trying it on a large
source file.

Example: Align lines 1 through 5 of the following
text. Indent 5 spaces in columns 20 through 60.

E>L

E>AL 1/5

@ o B W N

THE FOLLOWING VERIFICATION PROCEDURE

IS INTENDED TO PROVIDE THE USER WITH BOTH
AN INTRODUCTION TO SYSTEM OPERATION AND A
VERIFICATION OF SYSTEM SOFTWARE AND
HARDWARE.

THE FOLLOWING FIVE SYSTEMS WILL BE USED:

IN 5 GO 20/60

w

6

THE FOLLOWING VERIFICATION
PROCEDURE IS INTENDED TO PROVIDE
THE USER WITH BOTH AN INTRODUCTION
TO SYSTEM OPERATION AND A
VERIFICATION OF SYSTEM SOFTWARE AND
HARDWARE.

7 THE FOLLOWING FIVE SYSTEMS WILL BE USED:

7-10

7.4.13 SCALE Command

Syntax:

Description:

Example:
E>S

SCALE

The above command format will
print out a repeating string of digits
starting from column 1 of the text
field and continuing to column 72.
This line of digits may then be
compared with printed or displayed
text line to determine actual column
numbers.

123456789-123456789-123456789-123456789-12345678

E>

7.5 Commands that Move the Edit Window

The ADVANCE and POSITION “disk edit mode”
commands maintain the same line numbers as the
edit input file on disk. For instance, an advance to
line 100 would read lines 100 through 149 (if the
size default is used). Of course, any insertions or
deletions change the line numbers and the text
written to the edit output file which will not,
therefore, necessarily have the same line numbers
as the text in the edit input file.

The “ADVANCE string” and the “POSITION string”
command both have the automatic case conversion
feature. That is, ABC = ABc = Abc, etc.

7.5.1 ADVANCE Command

This command advances the edit window forward
only (in the direction of increasing line numbers).
ADVANCE (rather than the POSITION command)
normally is used to advance through a disk file.
When advancing, prior to finding the first line or
string, pressing any key will stop the advance and
list the line the command was currently processing.

The specific options for the ADVANCE command
are described below.

Syntax:

Description:

ADVANCE [range]

The above command format writes
the contents of the edit buffer to
the edit output file, clears the edit
buffer, then copies the contents of
the edit input file (starting at the
next input line) to the edit output
file until the lower line of the
specified range is reached. Text is
then read from the edit input file to
the edit buffer until the upper line
of the specified range is reached, or
an end-of-file is reached, or the
butfer is filled. If the lower line
number of the specified range

already has been passed (either it
was in the current buffer or it
previously had been written to the
edit output file), the message

LINE NUMBER BEYOND RANGE
is printed on the console, and the
command is aborted.
If only the lower line of a range is
specified, the editor sets the upper
line of the range to the lower line
plus 49, For example,

A LINE
is equivalent to

A LINE/LINE + 49

Examples:

1. Advance to 200.

E>A 200
E>

Equivalent to AD 200/249.

2. Advance to 300 through 600.

E>A 300/600
b

3. Advance to 200.

E>A 200
LINE NUMBER BEYOND RANGE
[

Syntax: ADVANCE string

The above command format writes
the contents of the edit buffer to
the edit output file, then copies the
contents of the edit input file
(starting at the next input line) to
the edit output file until the
specified character string is found.
If the character string is found, it

Description:

will be the conly line written from the

edit input file to the edit buffer. If
the character string is not found,
the contents of the edit input file
are copied to the edit output file

until an “EOF” (end-of-file) is found.

Examples:

1. Advance to the first occurrence of the character
string $DEFAULT:.

E>A ‘$DEFAULT!
1048 SDEFAULT:
E>

2. Advance to the first occurrence of the character
string ABC.
E>A ‘ABC
EOF AT 276
E>

ABC was not found.

7.5.2 POSITION Command

This command moves the edit window to a new
position in the edit input file. The contents of the
edit buffer are written to the edit output file, the
edit buffer is cleared, and then the specified lines
are read into the buffer from the edit input file.

POSITION allows a user to recognize large blocks
of text in his file. For instance, in the example
below, suppose a user wanted to move the sections
of text designated “A,” “B,” and “C" so that “C”
was the first section of text in the source file, “B”
was next, and "A” was last.

Source file after
POSITION commands

Source file before
POSITION commands

1 : :

A C
500 —
501 — ~
B B
1000 e
1001
c A
1500

First, the user would enter disk edit mode, then
position at the range of lines designated “C,” then
at the range of lines designated “B,"” then at the
range of lines designated “A.” Finally, he would
terminate the edit. If the source file was named
"TEST,” then the operation would be as follows:

E>E TEST Enter disk edit mode.
E>P 1001/1500 Position at section “C.”

E>P 501/1000 Position at section “B.”

E>P 1/500 Position at section “A.”

BT Terminate disk edit mode.

TERMINATE GURRENT EDIT (¥/N,CR = YES)?
OK TO DELETE FILE PDS:TEST.SRC (Y/N,CR = VES)?
E>

The specific options for this command are
described below.

Syntax: POSITION range

The above command format
positions the edit window at the
specified range of lines. If the range
is too large to fit into the edit
buffer, the message

BUFFER FULL

Description:

is printed on the console, and the
command terminates with the last
line that will fit in the buffer. If this
happens, the user may use the
ADVANCE command to edit the
remainder of the range, then
continue. (See Example 4.)

If just the first line of the range is

given, the default range will be
“line/line + 49.”

Examples:

1. Position at lines 100 through 700.

E>P 100/700
BUFFER FULL
E>

The range was too large.

2. Position at lines 1 through 200.

E>P 1/200
E>

3. Position at line 100. (Range will be 100/149.)

E>P 100
E>

4. In this example, the user has divided his source
into three sections, and plans to move section C
to the beginning of the file, followed by section
B, then section A (see the figure below).
However, there is a problem in that the buffer is
not large enough to hold section B in its
entirety.

Line
No.
1
A
500
501
B
1500
1501
[+
2000 3
E>E TEST Enter disk edit mode.
E>P 1501/2000 Position at section C.
E>P 501/1500 Position at section B,
BUFFER FULL
E>LL List the last line in the
1000 JP ACOOP buffer.
E>A 1001/1500 Advance to the end of
section B.
E>P 1/500 Position at section A.
E>T Terminate the edit.

TERMINATE GURRENT EDIT (Y/N,GR = YES)?
OK TO DELETE FILE PDS:TEST.SRG (YIN,CR:YES)’.’@
E>

Syntax: POSITION string [FROM line]

The above command format
positions the edit window at the
first line in which the specified
character string occurs, beginning
from the line specified by the
“FROM line” option. If the “FROM
line” option is not specified, the
search will begin from the next
input file.

Description:

If a line containing the character is
found, the line is listed on the
console. The edit buffer will contain
only that line.

7412

Examples:
1. Position to the first occurrence of DATA
beginning from line 86.

E>P ‘DATA’ FROM 86
143 LBI 0, DATA
E>

2. Position to the first occurrence of BLANKS.

E>P 'BLANKS' .
683 $GR: LBl 1, BLANKS
E>

7.6 Disk Edit Mode “Setup” and “Quit”
Commands

The EDIT, FINISH, TERMINATE, and ABORT
commands described in the following paragraphs
allow the editor program to enter and exit disk edit
mode.

Note: The user should assure that there is ample
space on his disk for the edit output file
before entering disk edit mode. Upon
entering the disk edit mode, the size of the
available disk space and the size of the input
file are displayed. If the user is creating a
new file, only the available disk size is
displayed.

7.6.1 Edit Command

This command may be used to put the editor in
disk edit mode. The syntax and specific options for
the use of the command are described below.

Syntax: EDIT filename [TO filename]

In the above command format the
first named file is declared to be
the edit input file and the second
named file is declared to be the edit
output file. If the edit output file
does not exist, the editor will create
one at a protection level equal to
that of the input file. If the edit
output file does exist, dialogue
appropriate to its protection level
will take place after the edit is
completed. If a second file is not
named, the editor will construct a
provisional edit output file. If the
edit is completed normally, the
editor will delete the original edit
input file and replace it with the
edit output file. The protection level
of the new edit input file will be the
same as that of the old edit input
file.

Description:

Examples:

1. Create a new edit output file.

E>E TEST1
CREATE NEW FILE (Y/N,GR = YES)? €B)
B>

2. Edit disk file TEST1 to TEST2.

E>E TEST1 7O TEST2
E>

3. Edit disk file TEMPA.SRC. (Editor already in disk
edit mode editing TEMPA.SRC.)

E>E TEMPA.SRC

FINISH CURRENT EDIT (Y/N,CR = YES)?

OK TO DELETE FILE PDS:TEMPA.SRC (Y/N,CR=YES)? N_
FILE PDS:TEMPA.SRC

CAN'T DELETE No permission to delete file.
E>

4. Edit disk file B.SRC to C.SRC. (Editor already in
disk edit mode editing A.SRC.)
E>E B.SRC TO C.SRC
FINISH CURRENT EDIT (Y/N,GR = YES)?

OK TO DELETE FILE PDS:A.SRG (Y/N,GR= ves)?
E> Now ready to begin new edit.

5. Edit disk file B.SRC. (Editor already in disk edit
mode editing A.SRC.)

E>E B.SRC

CONTINUE CURRENT OUTPUT FILE (Y!N.CR:YES)?@

E> In this example, file A.SRC is
terminated, and file B.SRC is
opened.

7.6.2 FINISH Command
Syntax: FINISH

Description: The above command format
appends the contents of the edit
buffer and the remainder of the edit
input file to the edit output file,
terminates disk edit mode, and
closes the edit input file and the
edit output file. This is a normal
completion.

If the editor is not in disk edit mode
this command is ignored.

Examples:

1. Finish the current edit.

E>E

FINISH GURRENT EDIT (Y/N,CR = YES)?

OK TO DELETE FILE PDS:DIVIDE SRC (Y/N,CR = YES)?)
E>

2. The editor was not in disk edit mode.

E>F
NOT IN DISK EDIT MODE
E>

3. Finish the current edit.

E>F
FINISH GURRENT EDIT (Y/N.GR = YES)?

FILE PDS:ASRC There was not enough space on
END OF DISK the disk for the edit output file.
E>

7.6.3 TERMINATE Command
Syntax: _TERMINATE

Description: The above command format
appends only the contents of the
edit buffer to the edit output file,
terminates the edit mode, and
closes the edit input file and the
edit output file. This is a normal
completion.

If the editor is not in disk edit mode
this command is ignored.

Examples:

1. Terminate the current edit.
E>T
TERMINATE CURRENT EDIT (Y/N,CR = YES)? (CR)

OK TO DELETE FILE PDS:SAMPLE.SRG (Y/N.CR = YES)? G8)
E>

2. The editor was not in disk edit mode.

E>T
NOT IN DISK EDIT MODE
E>

7.6.4 ABORT Command
Syntax: ABORT

Description: The above command format aborts
the edit mode. The edit buffer is
cleared, the edit input file is closed,
and the edit output file is not
written. If the editor is not in the
disk edit mode, this command is
ignored.

Examples:

1. Abort disk edit mode, then list the contents of
the edit buffer.

E>AB
ABORT CURRENT EDIT (¥/N,CR = YES)? @
L

BUFFER EMPTY

E>

2. The editor was not in disk edit mode.

E-AB
NOT IN DISK EDIT MODE
E>

713

COP Cross Assembler (ASM)

8.1 General Introduction

The COP Cross Assembler (ASM) is a PDS system
program which translates symbolic program files
(created with the text editor, using Assembly
Language statements) into object code files (Load
Modules) which contain program instructions in
binary machine language format. The Load
Modules, in turn, are used for loading into PDS
shared-memory for debugging (see Chapter 9), for
mask programming the machine code into the
appropriate COP400 device (MASKTR), or for
programming “test”” PROMs by the PDS user. The
assembler also generates an output listing
containing source statements with their
corresponding machine code and memory
locations, error messages, and other information
useful to the programmer in debugging and
verifying COP400 programs. Included in the listing
are some warning messages with respect to
emulating the 410L/411L/420C chips with the
COP400-E02 emulator.

The warnings are:

e i RAM REGISTERS ARE NOT THE SAME AS THE 402
il STACK ON 410/411 HAS ONLY 2 LEVELS
3 “IT" INSTRUCTION VALID FOR 420C ONLY

(TWQ-BYTE NOP ON 402)

IF THE LISTING HAS BEEN SUPPRESSED, AS IN
MACROS WHERE THE EXPANSION IS NOT LISTED
OR BY USE OF LIST OPTIONS, THE "W* WILL BE
PRINTED ON THE FIRST PRINTED INSTRUCTION
AFTER THE LIST IS TURNED BACK ON. THIS
WARNING MEANS THAT THERE WERE
INSTRUCTIONS IN THE NONLISTED CODE THAT
WOULD HAVE GENERATED WARNINGS HAD THE
LIST BEEN ALLOWED.

W

The source version number is printed on the
assembled program listing to aid in tracking
listings vs source files.

This chapter will describe the assembler
statements, coding conventions, and other
information necessary to use ASM.

To call ASM, the user types in the @ command:

X>@ASM | =input[,0 = output][,L = List][,options]
ASM,REV:B

(Assembly now begins.)
or:
X>@ASM
ASM,REV:B

A>| =input[O = output][L =list][,options]
(Assembly now begins.}

81

where the assembly parameters are as follows:

Parameter Parameter
Description Definition
Input Device (required)
Disk File I =filename

Qutput Device (optional):

Disk File O =filename

List Device (optional):

Conscle L = *CN (default)

Printer L="PR

Disk File L =filename
Listing Options (optional):

Error Listing Only EL

No Symbol Table List NM

No Comment List NC

No Listing NL

The symbolic Assembly Language input to ASM is
from a disk file created by the user. The default
modifier for the input filename is SRC.

The machine code Load Module_ may be output to a
disk file by the assembler. The default modifier for
the output filename is LM.

An assembly Listing may be output to the console,
printer, or a disk file. The default modifier for the
list filename is LST.

The Load Module and Listing will be produced only
if the user specifies the "O="or L="
parameters, respectively.

The Listing contains program assembly language
statements, together with line numbers and page
numbers. For assembly language statement lines
which generate machine code, the hexadecimal
address of memory locations and their contents are
also indicated. Errors associated with assembly
language statements are flagged with descriptive
error messages on the appropriate statement lines.
The Assembler listing also produces an
alphabetical listing of all symbols used in the
program together with their values. Symbols which
are defined but not referenced by the program are
flagged with an asterisk (*). Symbols which are
referenced but undefined are flagged with a “U.”
The listing also indicates the number, it any, of
errors encountered during the assembly, the
number of ROM words (bytes) used, the source and
object checksum values and the input, output and
list filenames.

Examples of invoking an assembly:

1. Assemble disk file ADD.SRC; output load
module to disk file ADD.LM; output full listing to
printer.

A>1=ADDO = ADD.L = *PRR)

2. Assemble file DSPLY.SRC; no load module;
output error list only to console.

A>| = DSPLY,L = "CN,EL :E

3. Assemble disk file ABC.SRC; output load module
to disk file ABC.LM; output full listing to disk
file ABC.LST:

A>1= ABC,0 = ABG,L = ABG (CR)
4. Assemble disk file ABC.SRC, no listing.
A>1 = ABC,NL

Upon pressing the carriage return key associated
with each of the above commands, the assembly
process will begin. The user may terminate the
assembly or the output of an assembler output
listing by pressing any key. The system will then
interrogate the user concerning aborting the
assembly as follows:

CONTINUE ASSEMBLY (Y/N,CR = YES)?

Pressing N €)" will abort the assembly,
terminating the printing of an assembly output
listing if in progress. Pressing “Y ’ or " will
result in a continuation of the assembly.

The disk containing ASM must be loaded into the
disk drive prior to calling the assembler via the
@ASM command. This may be the CDS master
diskette or another disk to which ASM has been
copied using the File Manager (see Chapter 5).
After calling the Assembler, the user must insert
the disk containing the source code file to be
assembled into the drive disk. {If the file to be
assembled is contained on the same disk as the
ASM disk, no change of disks is, of course,
required.)

If the user program to be assembled is a disk file
which resides on the same disk as ASM, the user
may call and invoke an assembly after loading the
disk containing both programs by combining the
call of the Assembler program and Assembler
parameter specifications into one command. The
following. is an illustration of this technique. Note
that a space must be inserted between the
Assembler call (@ ASM) and Assembler parameter
specifications.

Example: To call the Assembler and begin an
assembly of file ADD.SRC (as in
Example #1 above) contained on the
same disk:
@ASM | =ADD,0=ADD,L = "PR(CR
ASM,REV:B

(Assembly of ADD.SRC
now begins.)

82

8.2 The Assembly Process

In order to understand how to use the Assembler, it
is helpful to have a brief introduction as to the
purpose of an assembler and how it works.

If an assembler were not available, programs would
have to be written in machine code. The binary
code for each instruction would have to be
determined and manually entered into the machine.
Transfer-of-control instructions, such as JMP,
would require tedious manual calculation of the
JMP address to allow calculation of the machine
code. Instructions with operands, such as AISC,
would require manual insertion of the operand
wvalue into the machine code.

An assembler simplifies the programmer’s task in
several ways:

1. Each instruction is represented by an “English-
like' word, called a mnemonic, instead of less
intelligible binary machine code. The assembler
translates the mnemonic into the appropriate
code. For example, the COP400 No-OPeration
instruction is represented by the mnemonic
“NOP.” The assembler translates this into the
code 01000100.

2. Instructions which are to be referenced by
transfer-of-control instructions may be labeled
with an “English-like”” word, called a label, and
the transfer instruction may use this label. The
assembler will assign the appropriate address to
the label, and will use it to determine the proper
machine code for the transfer instruction. For
example, if the instruction at address 3A7 is
CLRA and it is desired to jump to this
instruction from elsewhere in the program, a
label is used:

CLEAR: CLRA
label

The jump instruction, rather than being JMP 3A7,
is simply:
JMP CLEAR

The assembler calculates the appropriate
address (3A7).

3. Instructions with operands may be written with
the operand following the mnemonic. The
assembler will insert the value of the operand
into the machine code. For example, AISC 7 is
translated by the assembler into the code:

0101 0111
—— e
AISC il

The above three functions are present in almost
every assembler. The COP assembler has several
other special features which further ease the
programmer’s task:

4. Values may be assigned to “English-like” words,
called symbols, and these symbols may be used

as the operands for instructions. For example,
the value 3 may be assigned to the symbol
COUNT:

GCOUNT =3

and this symbol may be used as an operand for
instructions:

LBI counT (Equivalent to LBI 3.)

This feature is often used when a value may be
changed during the process of program
development. In this example, only the value
assigned to COUNT needs to be changed. If
COUNT was not used, all LBI 3 instructions
throughout the entire program would have to be
changed.

5. An operand may consist of an arithmetic
expression. The expression will be evaluated by
the assembler and its value for the operand.
Examples:

(@) LBI COUNT+1

(b) sTn -2

(€) umP .+3

(d) AISC 3*SIZE-LEN/2
Expressions may be used to improve program
clarity and to simplify alterations of the program
by assigning values to symbols at the front of
the program, and using them in arithmetic
expressions for instruction operands. Another
use of an expression is shown in (c) above,
which jumps to the current instruction plus 3,
thus precluding the necessity for a label on this
instruction.

6. Special assembler statements called
“directives” give the user further flexibility in
writing programs. Directives are available to
assign a title to the program, specify the
COP400 chip number and options, specify
program page numbers, feed pages and lines of
the output listing, perform conditional assembly
of instructions, etc.

7. Assembler procedures, or MACROs, allow the
programmer to give an “English-like” name,
called the MACRO NAME, to sequences of
instructions that are frequently used, and to
insert these instructions into the program simply
by stating the MACRO NAME.

The Assembler performs its functions by reading
through the Assembly Language statements
sequentially from top to bottom, generating the
machine code and a program listing as it proceeds.
Since it reads statements sequentially, a special
problem occurs which must be overcome.
Specifically, suppose the Assembler encounters the
statement

JMP GLEAR

but has not yet encountered the label CLEAR. It
will be unable to generate machine code for the
instruction. This problem is solved by making the
assembler perform two “passes’’ through Assembly
Language statements.

83

Pass 1 of the assembler does not generate a Load
Module or a Listing. Its purpose is to assign
address values to labels. It does this by using an
internal counter called a “location counter.” The
location counter is initialized to zero at the
beginning of each pass. Each time the assembler
encounters a single-byte COP400 instruction, the
location counter is incremented by one. Each time
the assembler encounters a double-byte COP400
instruction, the location counter is incremented by
two. The location counter thus keeps track of the
ROM address of the next COP400 instruction. In
this respect it is similar to a COP400 program
counter (PC) register. As the assembler encounters
program labels, the labels are assigned the current
value of the location counter. In this way, the
assembler builds a table of label values which can
be used during pass 2 to generate machine code
for transfer of control instructions.

Pass 2 of the assembler generates the Load
Module and/or Listing, as specified by the user. It
uses the table of label values generated during
pass 1 to calculate machine code values for
transfer of control instructions. It also uses the
location counter to determine the address which
each COP400 instruction should occupy. The Load
Module contains this address information,

The user may alter the value of the location
counter with special Assembly Language
statements (described later). Care must be
exercised when doing this so as not to try to put
two different COP instructions in the same ROM
location!

8.3 Introduction to Assembly Language
Statements

The input to the assembler consists of a sequence
of Assembly Language statements. There are three
types of Assembly Language statements:

1. Instruction statements, which provide a COP400
instruction mnemonic to be translated by the
assembler.

2. Directive statements which provide the
assembler with information or request it to
perform specific tasks.

3. Assignment statements, which assign values to
symbols.

Each statement is written using the following
characters:
Letters — A through Z
Numbers — 0 through 9
Special Characters — 1§ % "()* + ,-./;:
Note: “b" indicates a blank.
These statements are entered into the assembler

input file using the text editor (Chapter 7), and
following certain coding conventions. Each

statement contains from one to four fields in the
following order:

label field operation field operand field comment field

Since the assembler accepts free-form statements,
the user may disregard specific field boundaries,
provided the appropriate delimiters for each field
are used. However, for clarity and readability, the
use of field boundaries is highly recommended.
Useful boundaries can be achieved with the PDS
“control | or T" tab function described in Section

4.5, PDS initially sets tabs at columns 9, 17, and 33.

The @ @TAB command described in Section 4.6
can be used to change these settings if desired.
The comment field may extend to column 72.
Following is a description of each field.

Label Field

The label tield is optional and may contain a
symbol used to identify a statement referenced by
other statements. When the assembler encounters
a label, it assigns it to the current value of the
location counter. More than one label may appear
in the label field, in which case any of the labels
may be used to reference the labeled location. A
label may appear by itself in a statement, in which
case it refers to the next instruction or data word
in the source program. A colon (:) must be used to
delimit (terminate) each label.

Labels are the most common means of referencing
address locations.

Example: JMP SUB

SUB: CLRA

A label must conform to the following rules:

1. A label may contain one or more alphanumeric
characters, the first of which must be either a
letter or a dollar sign ($). Although up to 32
characters may be included, only the first six
characters are recognized by the assembler
program. Therefore, the programmer must
ensure that a long label is unique in the first six
characters.

Example: LONGLA : ;
P are identical to
LONGLABEL1
the assembler
LONGLABEL2

2. If the first character in the label is a dollar sign
($), the label is defined as a local label. The
.LOCAL directive allows the programmer to
specify that local labels appearing between two
.LOCAL directives are accessible only within
that region of the program (see Section 8.4.3).
This enables the programmer to use identical
labels throughout a program without causing a
conflict between label names. Within a local

84

region, a local label must be unigue in the first
four alphanumeric characters, not including the
dollar sign ($).

Example: are identical labels

SABCD
to the assembler

$ABCDEF

3. No special characters or embedded blanks may
appear within a label.

4. A label represents a memory address and,
hence, must have a value ranging between 0 and
the maximum ROM address of the COP400 chip
being used.

Several examples of labels follow:

Legal lllegal

Labels Labels Reason lllegal
$ABC LONGLABEL1 First six characters are not unique
LONGLA LONGLABEL2
AB2 2AB First character must be a letter or
$2 2CDE a dollar sign
XYZ XYZ$ Last character is not alphanumeric
$ABCDEF $ABCDE First four characters of the local
$ABC2EF SABCDF labels are not unique

A label referencing an instruction need not be on
the same line as the instruction — the label will be
assigned the value of the address of the first
instruction location following the label. This allows
the programmer, when writing source code, to
devote a separate line with comments to labels,
providing clearer documentation of the program
and allowing for easier editing of the source code.
(An edit of a “label-line” instruction often involves
a change of the label location.)

SuB:
CLRA

Example: ; SUBTRACT ROUTINE

: CLEAR ACCUMULATOR

Note: The label “SUB” will be
assigned the value of the address
of the CLRA instruction.

The label field may also contain a symbol, without
a following ":". This format is used for the
assignment statement (Section 8.4.2).

Operation Field

The operation field is mandatory and contains an
identifier indicating which type of statement it is.

In an instruction statement, the operation field
contains the mnemonic name of the desired
instruction. For example:

label operation
e, ——
sSuB: CLRA

Valid COP400 instruction mnemonics are provided
in Table 8.2. The operation field of an instruction
statement is often called a mnemonic field.

In a directive statement the operation field
contains a “." immediately followed by the name of
the desired directive. For example:

.END
Valid directive names are provided in Table 8.6.

In an assignment statement the operation field
contains a “="". (See Section 8.4.2.)

One or more blanks terminate the operation field.

Operand Field

The operand field contains entries that identify
data to be acted upon by the operation defined in
the operation field. Many statements do not require
use of the operand field. For those that do, the
operand field usually consists of one or two
expressions, separated by a comma.

An expression is composed of terms. There are 7
types of terms:

1. A decimal constant is a decimal number that
does not begin with zero. Leading zeros for
decimal data are not permitted, except for the
simple case of the constant 0.

Examples: 3,234,-10.

2. A hexadecimal constant term is a hexadecimal
number that starts with “X"' or with a leading
Zero.

Examples: X'234,07B,X'F.

3. A string constant term is a single character
enclosed in single quote marks.

Examples: ‘Z; '$,’ '3’

To use a single quote mark for a string constant,
write four quote marks: "’

4. A label term is described above under the label
field description.

5. A symbol term is constructed in the same way
as a label term, but is used differently. (See
Section 8.4.2))

6. The location counter term is a single dot (*.”).
The dot represents the location counter, and, if
it appears within an expression, it is replaced by
the current value of the location counter.

Example: JMP . +2

7. A lower-half term is represented by L({term). An
upper-half term is represented by H{term). When
the assembler encounters one of these in an
expression, it replaces it with either the lower or
the upper 8 bits of the value of the symbol,
respectively.

Examples: H(X'172F) is replaced by X'17
L(X'172F) is replaced by X'2F
H(X'00FF) is replaced by X'00
L(X'00FF) is replaced by X'FF

Terms are represented internally in the assembler
in 16-bit binary notation. Negative numbers are
represented by two’s complement notation. In this
notation, the negative of a number is formed by
complementing each bit in the data word and
adding one to the complemented number. The sign
of the number is indicated by the most significant
bit. When the most significant bit is “0,” the
number is positive or zero; when the most
significant bit is “1,” the number is negative. The
maximum range for a 16-bit number in this format
is 7FFFqg (4 3276740) to 80004 (— 32768,0).

String constants are represented internally by the
appropriate 8-bit ASCII code.

An expression may consist of a single term.

Examples: 5
X'3C
Q
sSuB

H{H'3CF)
L(SUB)

Alternatively, an expression may consist of two or
more terms combined using the operators shown in
Table 8.1.

Examples:
36 + SUB
X'3F0-10
XTF&'Q
3*51XYZ
%SUBI2

The multiterm expression is evaluated by the
assembler program in a left-to-right order

o Tabla81ASM Arithmetic and Logical Operators

 Operstor Funcion Type
8 amen | By
o " i _Sﬁnlr:aétlb_n i : Unan,'.c.:r Binary
e : M_Q:ltipiicaiion . Dinany
o Divison - Binar
'-'.'%:"-- o ogieainor Unary
& Logical AND - Binay
i logicalOR Binay
wel G e Binary
S "‘E_qu.at To" : Binary
> “Greater Than" : Binary

regardless of the operators used between the
terms. However, parentheses are permitted for the
purpose of grouping the terms of a multiterm
expression. They may be nested up to nine-deep
within a multiterm expression, with the innermost
parenthetical operation being resolved first.

The constructs “A<B,” “A=B,” and “A>B"” cause
the specified comparison to be made. The result is

“1” if the comparison is true and “0” if the
condition is false.

Examples: 1=(2+3%(4 +5)6
L(TABLE} + X'10
100 -1
multiterm
ENTRY1 + ENTRY 2-4 expressions
A>B * DISKAD

(100-1"12) + H(X'300)

The magnitude of the expression must be
compatible with the memory storage available for
the expression. For example, if the expression is to
be stored in an 8-bit memory word, then the value
of the expression must not exceed X'FF.

Example: JMP X'40 + CHAR
Expression value must
not exceed X'3FF for
COP420 (1024 bytes of

program memory).

If the expression is used in conjunction with the JP
instruction to transfer control to a new ROM word
on the same page, then the value must not exceed
N*404¢ + 3E4¢ Or precede N*40,5 where N = the
number of the current page.

Example: PAGE 0

JpP TABLE +4
Expression value must not
exceed 3Eq4 or precede 0.

On some statements, there are a mandatory first
expression and an optional second expression.
When such a statement is encountered by the
assembler and the operand field contains two
expressions, the assembler will left shift the value
of the left expression by four bits, and will then
add to it the value of the right expression, which
must evaluate to less than 16,4 (4 bits). This feature
is useful on the LBI instruction.

Example: LBI 3,15

In this example, the assembler evaluates the left
expression (3), shifts it left four bits to obtain the
value X’30, then evaluates the right expression (15),
and finally adds it to X'30, obtaining a result of
X'3F. This value is then used to determine the
correct machine code for the LBI instruction. The
above example is thus equivalent to:

LBl X'3F

Comment Field

Comments are optional descriptive notes which are
printed on the assembler output listing for
programmer reference and documentation.
Comments should be included throughout the
program to explain subroutine linkages, data
formats, algorithms used, formats of inputs
processed, and so forth. A comment may follow a

86

statement on the same line, or the comment may
be entered on one or more separate statement
lines. The comment has no effect on the assembled
Load Module (.LM) file.

The following conventions apply to comments:
1. A comment must be preceded by a semicolon (;).

2. All ASCII characters, including blanks, may be
used in comments.

3. Comments should not extend beyond column 72,
but a comment may be carried aver on the
following line (preceded by a semicolon).

Note: When listing a COP400 program on the

system printer, comments are listed to column
63 only.

Example:
Label Operand Comment
GETVAL: JSR SAVREG ; LOAD MEMORY DATA INTO A

The label, GETVAL, is a label name for the address
of this instruction. Thus, GETVAL can be used in
other statements (preceding or following) to
reference this statement. The instruction mnemonic
JSR specifies the COP400 instruction. The operand
field for the JSR instruction is the symbol SAVREG.
The comment field is separated from the operand
field by a semicolon {*;”). Spaces on each side of
the semicolon are optional. The comment allows
the programmer to quickly identify the operation
performed by the instruction.

8.4 Assembler Statements

The following sections describe the COP Assembly
Language statements in detail. Some statements
have optional fields. These optional fields will be
enclosed in brackets ([]) to indicate that they are
optional.

8.4.1 Instruction Statements

There are approximately 60 COP400 instructions.
All are applicable to the COP440. A few of these
are inapplicable to the COP420. (The COP420
instruction set is a subset of the COP440’s.) The
COP410's instruction set, in turn, is a subset of the
420’s — it lacks some of the 420's instructions (410
< 420 < 440). Also, the COP421 and COP411,
because of their lack of specific inputs, do not
contain some instructions that are present in their
related COP devices, the COP420 and COP410,
respectively. The programmer, therefore, should
refer to the COP400 Microcontroller Family Chip
User’s Manual for specific information on the
instruction sets of the particular COP devices for
which the assembly code is being written.

COP400 series Assembler Instruction statements
fall within one of the following six classes:

¢ Arithmetic Instructions

* Transfer of Control Instructions

=

* Memory Reference Instructions
* Register Reference Instructions
* Test Instructions

* Input/Output Instructions

Table 8.2 contains a summary of the COP400 series
instruction set, grouped according to one of the
above set classes. Additicnal instructions which
will be included in the COP400 instruction set are
not indicated. (Refer to COP440 data sheet.) This
table provides the assembly mnemonic and
operand, hex code, machine code (binary), data
flow, skip ‘conditions and description for each
instruction. Refer to Table 8.3 for definitions of

symbols used in describing the COP400 series
instruction set. The Notes to Table 8.2 provide

87

additional information to assist the user in
understanding the operations of specific
instructions. For further detailed information on the
nature and use of the COP400 series instruction
set, examples of assembly language routines and
programming technigues, information on the
electrical specifications and architecture of each
COP400 series device, see the COP400
Microcontroller Family Chip User’s Manual. Refer
to Table 8.4 for an alphabetical listing of all
COP400 series instructions showing their
hexadecimal opcode. Also refer to Table 8.5 for a
hexadecimal opcode ordered list of the COP400
series instruction set. These latter two tables do
not include references to the additional COP400
instructions.

Table 8.2. COP400 Instruction Set (continued)

Mnemonic Operand

Hex
Code

Machine
Language Code
: ?Blnary)

Data Flow

Skip Conditions

Description

MEMOCRY REFERENCE INSTRUCTIONS (continued)

STII y

XAD r.d

XDS r

XIS r

7

0111] v
[00]r 0110}
0010/0011

10]r dof
100} r (0111}

00|r o100

y — RAM(B)
Bd + 1 Bd

RAM(B) — A
Brer—8r

RAM(rd) ~— A

RAM(B) ~— A

Bd - 1-+Bd

Brer-—Br
RAM(B) =— A

Bd + 1—~Bd
Brar—+ Br

None
None

None

Bd decrements past 0

Bd increments past 15

Exclusive-OR Br with r

Store Memory Immediate
and Increment Bd

Exchange RAM with A,
Exclusive-OR Br with r

Exchange A with RAM
pointed to directly by r,d

Exchange RAM with A
and Decrement Bd,
Exclusive-OR Br with r

Exchange RAM with A
and Increment Bd,

RAEGISTER REFERENGE INSTRUCTIONS

CAB
CBA

LB rd

LE! ¥

XABR

50

4E

01010000]

01001110

LOO] ¥ [td- 1|
d=0915
B

Lol o |

fanyd)

[00110011]

ool oy

00010010

A Bd

Bd—+ A

g B

y - EN

None

MNone .

. Skip until pot:a LBI

.~ None

. None

Copy A to Bd
Copy Bd to A

Load B Immediate with
r_,d (Note B)

Load EN Immediate
{Note 7)

- Exchange A with Br

A Br (0,0 > Aj3.Ag)

TEST INSTRUCTIONS
SKE:
SKE

SKGZ

SKGBZ

W N - O

SKMBZ

W noa O

SKT

00100000
0010/0001]

00110011
100100001

00110011
0000[0001
[0o0o1D00 1
00000011
00010011

00000001
00010001
00000011
000100711

01000001

18t byte

2nd byte

61 =

o

.A\ = RAMI(B)

Gao=0

Gp =

Go =
Ga3 =

oo oo

RAM(B)g
RAM(B)4
RAM(B)p =
RAM(B)3 =

fo B B o B8 |

A time-base counter
carry has occurred
since last test

Skip if C is True

Skip if A Equals RAM

Skip if G is Zero

(all 4 bits)

Skip if G Bit is Zero

Skip if RAM Bit is Zero

Skip on Timer
(Note 3)

-

-
O

Table 8.3. COP400 Instruction Set Table Symbols

Symbol Definition

INTERNAL ARCHITECTURE SYMBOLS

A 4-bit Accumulator

B 6-bit RAM Address Register

Br Upper 2 bits of B (register address)

Bd Lower 4 bits of B (digit address)

C 1-bit Carry Register

D 4-bit Data Output Port

EN 4-bit Enabie Register

G 4-bit Register to latch data for G /O Port

L Two 1-bit Latches associated with the N3 or INg
Inputs

IN 4bit Input Port

L 8-bit TRI-STATE 1O Port

M 4-bit contents of RAM Memory pcmted to by B
Register

Pl 10-bit ROM Address Register (program counter)

Q B-bit Register to latch data for L 1O Port

SA 10-bit Subroutine Save Register A

SB 10-bit Subroutine Save Register B

SC 10-bit Subroutine Save Register C

Sio 4-bit Bhift Register and Counter

SK. Logic-Controlled Clock Output

Symbol ; Definition

INSTRUCTION OPERAND SYMBOLS

d 4-bit Operand Field; 0-15 binary (RAM D:gnt Sel ect)

¥ & 2-bit Operand Field, 0= abmary (RAM Fleg\ster i
Select)

a 10-bit Operand Field, 0- 1024 bmary (HOM Address)

¥ 4bit Operand Field, 0-15 binary (Immemale Data)

RAM(s). Contents of RAM location addressed by s
ROM(t) Contents of ROM location addressed by t

OPERATIONAL SYMBOLS

+ Plus ;

Minus

Replaces

Is exchanged with

Is equal to ¢

The ones complement of A
Exclusive-OR -

Range of values

"9>|\IL

8-11

Table 8.4. Alphabetical Mnemonic Index
of COP400 Instructions

Instruction
ADD
ADT

AISC 1-15
ASC
CAB

CaAMQ*
CASC

CBA
GLRA

. COMP
CaMA*
ING*
INIL®
ININ
INL*
oo
JMP*
JP

- dsR
_JSRP

LBI09-150

LBI19-150
LBI.2,9-15,0
LBl 39~ 150

. LBI*D,1-8
LBI* 118
LB 2.1-8

LBIT31 8
LD D123
LDD" 0:3,0-15

LEI® 0=15
LQID
NOP .
oBD*

o6l

L oMGT
RE.
RET
RETSK

RMB 0,1,2.3

B

SMB 0,1,2.3
SKC
SKE

SKGBZT 0,123
SKGZ*
SKMBZ 0,1.2,3
SKT
STl

X 0,123
XABR
XAD* 0-3,0-15
XDS 0,1,2.3
X8 0.1,23

XOR

Hexadecimal
Op Code
31
4A
51-6F
30
50
3313C
10

4E
0ol
40
33/2G
33724
3310
33128
3312E
FF
60-6310-FF
BO-BE CO-CD
68-6B/0-FF
~ 80-BE
L 8-F
1Bo1F
28-2F
38-3F
33/81-88
33/91-98
| 33A1-AB

: 33/B1-B8

5,15,25,35
23/0-F
. 33IB0-6F
BF
44
333E
33/50-5F
. 3u3A
o
48
a8
4C.45,42,43
09
4D,47,48,48
20
21
331111313
33121
1,11313
41
70-7F

6,16.26,36
12

23/80-BF

717,27,37

4,14,24 34

]

Description

Add A to RAM

Add Ten to A

Add Immediate, Skip on Carry
Add with Carry, Skip on Garry
Copy A 1o Bd :
Copy A, BAM to Q
Complement and Add with
Carry, Skip on Carry

Copy Bd to A

Clear A

Ones complement of Ato A
Copy A to RAM, A

Input G ports to A

Input iL Latches to A

Input IN Inputs to A

Input L Ports to M, A

Jump Indirect

Jump

Jump within Page

Jump to Subroutine

Jump to Subroutine Page

' Load B Immediate (Single-byte)

Load B Immediate (Double-byte)

Load RAM into A
Load A with RAM
Loaq EN Immediate

- Load Q indirect

No Operation
Output Bd to D Outputs

‘Qutput to G Ports Immediate

Output RAM to G Ports
Reset C

Return

Return then Skip

Reset RAM Bit

Set C

Set RAM Bit

Skip if Cis True

Skip if A Equals

Skip if G Bit is Zero
Skip if G Equals Zero (all 4 bits)
Skip if RAM Bit is Zero
Skip on Timer

Store Memory Immediate and
Increment Bd

Exchange RAM with A
Exchange A with Br
Exchange A with RAM

Exchange RAM with A and
Decrement Bd
Exchange RAM with A and
Increment Bd
Exclusive-OR A with RAM

"Double-byte Instruction.

L %

6C
6D
6E
6F
81

82
83
84
85
86
87

91
92
a3
94
95

97
98
Al
A2
A3
A4
A5
AB
AT
AB
B1
B2
B3
B4
BS
B6
B7
BB

First word:

MO O @ P © @O~ O U & N = o

LE!
LEI
LE}
LE}
LBl
LBI
LBI
LBI
LBI
LBI
LBI
LBI
LBI
LBl
LBl
LBI
LBI
LBI
LBI
LBI
LBI
LBl
LBI
LBl
LBI
LBI
LBI
LBl

- LBl

LBI
LBI
LBI
LB
LBl
LBl
LBl

**LDD/XAD Instruction
23, second word: see table below.:

LDD
LDD
LDD
LDD
LDD
LDD
LDD
LDD
LDD
LDD
LDD
LDD
LDD
LDD
LDD
LDD
LDD
LDD
LDD
LRD

Table 8.5. Table of COP400 Instructions Listed by Op Codes {Hexadecimal) (continued)

12
13

14

15

0,1
02
03
04
05
06
07
08
11
1,2
1.3
1.4
15
16
1.7
1.8
21
22
23
24
25
26
2.7

28

bt

3.2
3.3
34

3.5 .

36
3.7
38

0,0
0.1
02
03
0.4
05
08
0.7
08
09
0,10
0,11
012
0,13
0,14
0,15
1,0
11
1.2
13

14
15

3A
38
3C
3D
gk
3F:
80
81

82
83
84
85
86
87
88
89
8A

88

8C

. 8D

8E
8F

LDD
LDD
LDD
LDD
LDD
LDD
LDD
LDD

LDD

LDD
LDD

LDD -
- LbD:
LDD

LDD

Lop

LoD
LD
LDD
LOD
LDD

LOD
LDOD
LDD

LDD

LoD
LDD
LDD
LoD
| LDD
: !_,Q'D
LoD
ions

LDD
LDD

LDD =

LDD

‘LDD
- LDD
LDOD -

LDD
LoD

LDD

LDD
XAD

XAD

XAD
XAD

XAD

XAD
XAD
XAD

XAD.

XAD
XAD
XAD
XAD
XAD
XAD
XAD

14
15
16
17
1.8
19
1,10

1

112
1,13
1.14
1,15
20
2.1
22
23
2.4

25
28
27
28
29
2,10
2,11
2,12
213
214

215

3.0
3t
ap
33
3.4
35
a6
4y
3.8
39
3.10
31
3312
313
314
3,15
a0
0.1
0,2
03
0.4
05
06
0.7
08
09
0,10
0,11
0,12
013
0,14
0,15

8-13

90
91
92
a3
94
95
96
97
98
99
9A
98
9c
9D
9E
9F
AQ
Al
A2
A3
Al
A5
A6
A7

AB

A9

AR

AB
AC
AD

CAE

MHe0 X
oADK
B0+ XX
GO EXX

AF

1 BO

B1
B2
B3
B4

i85

B6
B7
B8
B9
BA
BB
BG
8D

BE.

BF

XAD
XAD
XAD
XAD
XAD
XAD
XAD
XAD
XAD
XAD
XAD
XAD
XAD
XAD
XAD
XAD
XAD
XAD

XAD

XAD
XAD

. XAD
- XAD:

XAD
XAD
XAD
XAD
XAD
XAD

- XAD

XAD
XAD
XAD
XAD
XAD
XAD
XAD

- XAD

XAD
XAD
XAD
XAD
XAD
XAD
XAD
XAD
XAD
XAD

1,0
1,1
1,2
13
1,4
1,5
1,6
i
1,8
19
1,10
1,11
112
1,13
1,14
1,15
20
2
93
23
24
25
26
27
28
29
210
211
2,12
213
2,14
2,15
3,0
an
32
a3
3,4
35
36
a7
38
39
3,10
311
21
3.13
314
3,15

JSK or JMP to'page 0. 4. 10, or 14, word XX (0-3F g1l 0-2F
J5R of JMP 1o page 1.5, 11 or 15, word XX (0-3F1g): 40-7F
J5R or JMP to page 2. 6. 12, or 16, word XX (0-3F g1 80-8BF
JSH 0r JMP lo page 3. 7,13, or 17, word XX (0-3F g1 CO-FF

8.4.2 Assignment Statements

symbol = expression[,expression][;comments]

The Assignment Statement assigns the value of the
expression on the right of the equals sign to the
symbol on the left of the equals sign. If two
expressions are given, the value of the leftmost is
shifted left by four bits, and the rightmost
expression, which must evaluate to less than 164,
is added to this value. The Assignment Statement
does not generate machine code. It simply assigns
a value to a symbol. When the symbol is used in a
COP instruction statement operand field, the
assigned value is used to generate code.

Examples: X=a15 ; ASSIGN VALUE OF X'3F to
e
LBl X : GENERATE LBI 3,15
; INSTRUCTION CODE
¥=5 ; ASSIGN VALUE OF 5 TO "Y"
AISC Y : GENERATE AISC 5

 INSTRUCTION CODE

The Assignment Statement may also refer to the
current value of the location counter. The location
counter symbol (“."") may appear on both sides of
the Assignment Statement equals sign.

If it appears on the left, it is assigned the value of
the expression to the right side of the equals sign.
In that case the expression on the right must be
defined during the first pass so that the pass 1
label assignments may be made.

Examples: =X'20 ; SET LOCATION COUNTER TO
; ADDRESS X'20
=.+10 ; RESERVE 10 LOCATIONS

; FOR LATER USE

; SAVE CURRENT LOCATION
; COUNTER VALUE IN "“LOC"

DG =

If the symbol on the left of the equals sign is not a
"“.", then the expression on the right need not have
a value during pass 1 but the expression must have
a value during pass 2. This permits only one level
of forward referencing. An example of more than
one level of forward referencing is included in the

following examples:

THD: a=B+2 This expression is undefined
during pass 2 because it appears
before B is defined below. It is
therefore invalid; B is defined
only after pass 2. See “SND”
below.

SND: B=C-1 This expression is undefined
during pass 1 because it appears
before C is defined below. It is
defined during pass 2 because C

was defined during pass 1.

This expression is absolute,
defined during pass 1.

A symbol may be assigned only one value during
an assembly with an Assignment Statement.
(Attempting to redefine the value of the symbol will

result in an error message.) The .SET directive,
however, allows symbol values to be redefined
during an assembly (see Section 8.4.3).

8.4.3 Directive Statements

Directive Statements control the assembly process
and may generate data in the object program. The
directive name may be preceded by one or more
labels, and may be followed by a comment. It
occupies the operation field and may require an
operand field expression as determined by the
particular directive statement.

Assembler directive statements and their functions
are summarized in Table 8.6. Note that all directive
statements begin with a period for easy visual
differentiation from the instruction statement
mnemonics in the output listing. Each directive
statement is described in more detail in the
following sections. For further examples of use of
assembler directives in writing COP400 programs,
refer to Chapter 4, COP400 Microcontroller Family
Chip User’'s Manual.

_ Table 8.6, Summary of Assembler Directives

- -Faﬁe
el ddress constant generation 817
GHI dentif 'cgaﬁ_o.:-;'bf_ COPA0D device B8
iy ot Be pr_q_ﬁ:c_r‘o-t.I'me Joﬁbjng.? . 8
ELSE ..Ca‘ﬁdizionm assembly directive 819
END F’hysmal end of source program i e .
ENDDO End Macrotime looping* ' 824
ENDIT—‘ - .:candmuna[assembly dl(ac!we . : . 819
End Maero {iehmhon : 5-20
EHBO& - Macro arror messags ganeratlcn“ 5 3-.24 ;
EXIT i : Exit DO foop* : .B-_24;
-ORM ~ Output Listing mp-oHorm i 816
- Condmonai assembly directive 819
C : . Macro cundntmnal assembly“ 823
NCL include disk file ‘source code ! 819
LisT Listing autput control 815
LOCAL - _Establrsh anew]ocal symbol region - B47
M_)X_éﬁo Begin Macro definition* 820
MDEL Macrc delete" 8-24
f&;l_L_O_G : Macro Iocal symbol dasngnatnon 822
oRt Deﬂne COP400 device options 818
< PAG'{:.' 3 Set assembler Jocation counter to 818
i e page address
. SET . -Assign values to varibles 824
SPACE Space. n lines on Output Listing 816
.TITLé Identification of p}ogram 815
WORD . 8-bit data generation 816

*Used only in Macro definitions. **Macro related directive.

.TITLE Directive

Syntax:

Description:

Example:

.TITLE symbol ['string'] [;comments]

The .TITLE directive identifies the
load module and output listing in
which it appears with a symbolic
name and an optional definitive title
string. If a .TITLE directive does not
appear in the program, the load
module and output listing are given
the name MAINPR. If more than one
.TITLE directive is used, the last
one encountered specifies the
symbolic name. The symbolic name
must meet the symbel construction
restrictions discussed in Section
8.3. The string must be 26 or fewer
characters long for it to appear fully
on the output listing. Single quotes
(') must appear at the beginning and
end of the character string.

.TITLE TBLKP, ‘TABLE LOOKUP’

.END Directive

Syntax:

Description:

Example:

.END

The .END directive signifies the
physical end of the source program.
All assembly source statements
appearing after this directive are
ignored. All Assembler programs
must terminate with the .END
directive.

; SOURCE CODE

-END ; END OF PROGRAM

.LIST Directive

Syntax:

Description:

.LIST expression [;comments]

The .LIST directive controls listing
of the source program. This
includes listing of assembled code
in general, listing of unassembled
code caused by the .IF and .IFC
directives, listing of MACRO
expansions and listing of code
generated by the .INCLD directive.

Control of the various list options
depends upon the state of the six
least significant bits of the
evaluated expression in the operand
field (bits 5 through 0). Table 8.7
shows the options available, their
associated bit weights and
assembler default values.

Options are usually combined to
give the desired type of listing.

Examples:

1. Full Master listing:

LIST 1

2. Full Master listing and listing of all code
expanded during macro calls:

.LIST X'D

or

.LIST 01!10C

3. Suppress listing:

.LISTO

Control

|
- Function

Mas:lér List

LSt

“Macro List

Binary List

Include List

a3 w0

L 0 00

. Table :6_.7, List Options

B
. Binary. 6Bit

Positions Value Hex Value Description
e

Suppress all
_listing

1 01 *Full listing

A 0 00 “Suppress listing
s - of unassembled
code
Full listing
(ot IFs and
IFCs)

*List only mai:m
T - calls
10 ~ 08 Listonly code
generated by
macro calls
List all code
expanded
_ during macro
calls

© List only the
first two bytes
of generated

data

*List all the
binary output by
statements
generating more
than one werd
(eg., .ASCIl)

*List only error
lines for the
included file
List the included
file (source
statements from
the included
files are listed
without line
numbers)

5 0 0o

‘Indicates default.

.SPACE Directive

Syntax:

Description:

Example:

[label] SPACE expression [;comments)

The .SPACE directive skips forward
a number of lines on the output
listing as specified by the
expression in the operand field.

Skip 20 lines.

SPACE 20

.FORM Directive

Syntax:

Description:

Example:

.FORM ['string'] [;comments]

The .FORM directive spaces forward
to the top of the next page of the
output listing (form feed). The
optional string is printed as a page
title on each page until a .FORM
directive containing a new string is
encountered. No action is taken
(except for a new page title) if the
.FORM directive is encountered
immediately after an assembler
generated top-of-page request
which occurs when an output listing
is full,

.FORM'BCQ ARITHMETIC ROUTINES’
; FORM FEED

The string must be 26 or fewer
characters to be fully printed on the
output listing.

.WORD Directive

Syntax:

Description:

Examples:

[label:] .WORD expression[,expression ..]
[;comments]

The .WORD directive stores
consecutively in memory one 8-bit
byte of data for each given
expression. If the directive has a
label, it refers to the address of the
first expression. The value of each
expression must be in the range

— 128 to + 127 for signed data or 0
to 255 for unsigned data.

1. Single expression without a label.

WORD

X'FF

2. Multiple expression with a label.

TBL:

.WORD MPR-10, X'FF

Note: “TBL” will be assigned by the
address location occupied by the first
byte of the multiple expression, i.e.,
MPR-10.

The hexadecimal value of ASCII
characters may be stored in
memory using the .WORD directive
and an operand expression
specifying character strings or their

8-16

Example:

WORD 'H''E'.L.L 'O
WORD X'48,X'45 X'4C,X'4C,2'4F

hexadecimal equivalents. (See Table
8.8, ASCIl Character Set in
Hexadecimal Representation.)

Both of the following directive
formats will store the hex value of
the ASCII word “HELLO” in
successive memaory locations:

; CHARACTER STRING
; HEX EQUIVALENTS

In the smaller system dedicated
applications in which COP400
devices are commonly used, a more
typical function of the .WORD
directive is to place 7-segment
decode data in ROM for output to
the digits of a LED or VF display.
Table 8.9 provides the 7-segment
binary and hexadecimal values
associated with the display
numerals 0 through 9, with and
without the Decimal Point bit on
and with the contents of ROM
(I7-1p) assigned to Sa-Sg, D.P. as
well as to D.P., Sg-Sa.

Table 8.8, ASCII Character Set in Hexadecimal Representation

Char.
NUM
SOH
R

CETX

EOT
ENQ
ACK

BEL
B8
owT
LE

VT

FF
“ CH

S0

s

DLE

pet
- boz

DC3

D4
NAK
SYN
ETB

CAN

EM
sUB
ESC

Fs

GS
RS

us

7Bt 7Bit 7-Bit 7-Bit
Hex Sl Hek Hex Hex
Number = Char. Numbe Char. Number Char. N
BOLGE R ahe g \ 60
o e A a1 B
0z s om0 g s
e e e s o
e e d. o1
o5 ¢ w08 E 45 e 6
06 s agi 6
o7 L a g ey
B H 48 h 68
0y oo i7 4a P89
ga e gk 4 j 6A
08 4 ea % ap k 6B
e e e i e
e M. o4D m 6D
e e N g nooBE
OF Liooop O . AF o 6F
10 0. @0 p 50 b 70
o T ooy a5 qo
SR 2 32 R 52 r 72
a8 m S5 5.
q 1 5 t 74
15 5 35 u 55 u 75
T e v 56 v 76
17 7 W &7 w 77
B X 58 X 78
19 g 39 Y 59 y 79
1A 3A Z. 5A z A
1B : 3B [58 78
1c < \ 5C 7C
10) | 50 ALT 7D
iE = 1 5E ESC 7E
1F 50 e ~ 5F PEL o
rubout

Table 8.9. Display Digit Segments

Su

Sl DER

Hexadecimal
Values:

Sa-Sg, D.P.
=le=lg
D.P.

Hexadecimal
Values:

D.P., Sg-Sa
i et]

Binary Values:
Sa-Sg, D.P. =~ I7-1g

D.P.

_ D.P.
Sa Sb Sc Sd Se SI Sg OH/On| Off ©On | Off On

D.P. D.P.

o | rc ED) pr
gb ot | B0 e | 06 me
1 o1 | DA DB | 58 DB
100 f ks E3] A oF
wi e e | s s
‘o1 | B8 BT | D ED
on BE BF | 7D FD
ot | B0 E1 | o @
ot | FE e b pp
on L es Er | s B

@ a D e a0 e
e e Uy
R e
e o
-

2 o
=
(o BTN B B B

a
-
o
o

- o =

P e P R e
o

o

.ADDR Directive

Syntax: [label:] .ADDR expression[,expression . . .|

[;comments]

Description: The .ADDR directive generates 8-bit

bytes as specified by one or more

- expressions in the operand field of

this directive and places them in
successive memory locations.
These expressions are usually
labels and are used as address
pointers by the COP400 JID (Jump
Indirect) instruction which transfers
program control to the contents of
the address generated by the .ADDR
directive.

This directive masks out the upper
8 bits of the expression specified in
the operand field, and places the
lower 8 bits in successive memory
locations. Next, the lower 8 bits of
the symbol or expression are
masked and a comparison is made
of the upper 8B bits with the current
location counter address to ensure
that the address generated by the
.ADDR directive is in the same
4-page ROM block as the assembler
location counter — this test is
necessary since the JID instruction
must access a pointer and transfer
program conirol within the current
4-page program ROM “block.” If
this test indicates an out-of-range
expression, an error message will
be generated upon assembly and

listed on the assembler output
listing. For further information on
the operation, restrictions
associated with, and use of the
COP400 JID instruction, see
COP400 Microcontroller Family
Chip User’s Manual, Sections 3.2
and 4.1.

Example: Create an address pointer table to
be used by the COP400 JID

instruction.

Assuming that program labels
TBL1, TBL2 and TBL3 are located at
memory locations 01D3, 01DF and
02CO0, respectively, with the .ADDR
directive placed in the program
source code preceding memory
location 01C0 using an Assignment
Statement, then

=X"1C0 ; SET LOCATION POINTER TO

; ROM LOCATION X'01C0
.ADDR TBL1,TBL2,TBL3

will place the following address

pointer data in the following

memory locations:

Address (HEX) Data (HEX)
01Co D3 (lower B bits of address of
TBL1 label)
01C1 DF (lower 8 bits of address of
TBL2 label)
01C2 xX (ERROR message will be

generated — TBL3 address is
out of range for .ADDR
directive)
For further examples of the use of the .ADDR
directive in conjunction with the JID instruction,
see COP400 Microcontroller Family Chip User's
Manual, Section 5.3.

.PAGE Directive

Syntax: PAGE [expression] [; comments]

Description: The .PAGE directive changes the
assembler’s location counter to the
address of the beginning of the
ROM page specified by the
expression in the operand field. The
value of the expression may not
exceed the maximum ROM page
number for the chip being used.
(See .CHIP Directive.) There are 64
locations in each ROM page.

Example: .PAGE 2 ; SET LOCATION COUNTER TO

; X'80

.LOCAL Directive

Syntax: LOCAL [;comments]

Description: The .LOCAL directive establishes a
new program section for local
labels (labels beginning with a

dollar sign [8]). All local labels

between two .LOCAL directive
statements have their values
assigned toc them only within that
particular section of the program.
Note that a .LOCAL directive is
assumed at the beginning and the
end of a program; thus, one .LOCAL
directive within a program divides
the program into two local sections.
Up to 58 .LOCAL directives may
appear in one assembly.

Example:
$X:.WORD 1 ; FIRST LABEL $X
LOCAL : ESTABLISH NEW LOCAL SYMBOL

; SECTION

; SECOND LABEL $X, NO CONFUSION
; SINCE THEY ARE IN DIFFERENT

; "LOCAL" BLOCKS

$X:.WORD 1

.SET Directive
Syntax:

.SET symbol,expression [;comments]

Description: The .SET directive is used to assign
values to symbols. In contrast to an
ASSIGNMENT statement, a symbol
assigned a value with the .SET
directive can be assigned different
values an arbitrary number of times
within an assembly language
program, with each new value
taking precedence over the previous
value for a particular symbol.

Example: SET A,100 i SET A=100

SET BS50 {SETB=50
SET C,A-25'Bi4 ; SET C=A-25"Bl4
Note: This expression is always
evaluated from left to right
regardless of the operators used
between the variables and
constants unless parentheses
appear in the expression.

.CHIP Directive
Syntax:

.CHIP expressicn [;comments]

Description: The .CHIP directive specifies to the
assembler the particular COP
device for which the assembly
source code is being written. This is
necessary since different COP400
devices having a different number
of COP400 instructions may use the
COP Cross Assembler. The devices
which may be specified with the
.CHIP directive and the
corresponding values for their
operand field expressions are as
follows:

8-18

COP400
Device

Operand
Expression
COP410L
COP411L
COP420/420U/420C
COP421/421L/421C
COP440
COP444L
COP445L

410
411
"420
421
440
444
445
*Indicates default value.

A feature associated with the .CHIP
directive is that the assembler
allows for multiple .CHIP directives
in the program. The assembler will
treat the program as one written for
the COP device specified by the last
.CHIP directive (or if none, the
default device, the COP420) until it
encounters a new .CHIP directive. It
will then treat the program as one
written for a different device as
specified by the new .CHIP
directive.

Examples:

1. No .CHIP directive:

PAGE

.END

Q

Assembler assumes default device,
the COP420.

2. Multiple .CHIP directives:

.PAGE

.CHIP 440

.END

0 ; ASSEMBLER ASSUMES COP420

; ASSEMBLER ASSUMES COP440 FOR
; FOLLOWING CODE UNTIL NEXT .CHIP

.OPT Directive

Syntax:

Description:

{OPT expression1,expression2 [;comments]

The .OPT directive specifies to the
assembler which mask-
programmable options have been
selected for the device for which
the program is written (as specified
by the .CHIP directive). The first
expression indicates the option
number; the second expression
indicates the value to be assigned
to the specified option number.
Values for the first expression
(option numbers) must be within the
range 1 through 56; values for the
second expression (option values)

Examples: 5 (7 kel 1

must be within the range 0 through
14. A value of 15 indicates an
undefined option. Also, option
numbers and values must be valid
for the*particular COP device for
which the program is written. For
specific information on the options
and values associated with COP400
devices, see COP400
Microcontroller Family Chip User’s
Manual.

The .OPT directive does not convey
information to the assembler for its
own use. It is necessary to provide
option information to be included in
the assembler Load Module output
file for mask programming the
selected options into the COP part
when fabricated.

; SPECIFY OPTION 1=3

OPT 2,1 ; SPECIFY OPTION 2=1

.INCLD Directive

Syntax:

Description:

INCLD filename [;comments]

The .INCLD directive includes the
symbolic file specified in the
operand field of the directive in the
current assembler source code.
Specifically, it causes the

assembler to read source code from

the specified file on the current
diskette until an end-of-file mark is
reached, at which time it will again
start reading source code from the
assembly input file (see Figure 8.1
below). The file must be a symbolic
file. The default modifier is SRC.
Since the specified file is included
in the source code at assembly
time, the included file must, as
mentioned above, be coptained on
the current diskette at assembly
time. Expansion of the source code
included by this directive on the
assembler output listing is
controlled by bit 5 in the operand
field of the .LIST directive. A .LIST
with bit 5 set to “1” must be
contained in the assembly source
code prior to the .INCLD directive in
order for the contents of the
included file to be expanded on the
assembler output listing (see .LIST
directive, above).

Example:

.LIST

JANCLD

x21 ; EXPAND .INCLD SOURCE CODE ON
; OUTPUT LISTING

BCDADD ; INCLUDE 'BCDADD.SRC' FILE ON
: CURRENT DISKETTE

8-19

INPUT FILE

FILE A

.INCLUD FILE A \
. FILEB

INCLUD FILE B \

 NOTE: INPUT FILE, FILE A AND FILE B
MUST BE ON CURRENT DISKETTE.

 Figure 8.1 .INCLD Directive Operation

Conditional Assembly Directives

Syntax: [label] .IF
ELSE

-ENDIF

expression [;comments]
[;comments]
[;comments]

Description: The conditional assembly directives
selectively assemble portions of a
source program based on the value
of the expression in the operand
field of the .IF directive statement.
All source statements between a .IF
directive and its associated .ENDIF
are defined as an .IF-.ENDIF block.
These blocks may be nested to a
depth of ten. The .ELSE directive
can be optionally included in a
IF-ENDIF block. The .ELSE
directive divides the block into two
parts. The first part of the source
statement block is assembled if the
.IF expression is greater than zero;
otherwise, the second part is
assembled. When the .ELSE
directive is not included in a block,
the block is assembled only if the
.IF expression is greater than zero.
If an error is detected in the
expression, the assembler assumes
a true value (greater than zero).

Examples:

1. Two-part conditional assembly:

JIF COMPR
Assembled if COMPR greater
than zero

ELSE
Assembled if COMPR less than or
equal to zero

ENDIF

2. Nested .IF-.ENDIF block conditional assembly:
AF SMT

Assembled it SMT greater than
zero

| Assembled if SMT less than or
equal to zero

.Er:dDIF Assembled if OBR is greater than
3 - zero and SMT is less than or
equal to zero

T

.ENDIF

Labels appearing on .IF statements are assigned
the address of the next assembled instruction.
Labels cannot be used on .ELSE or .ENDIF
directives.

Listing of conditional assembly code is controlled
by the .LIST directive.

8.5 Macros

The primary use of macros is to make the assembly
process easier, by inserting duplicative or similar
assembly language statements into the program
source code without the need to manually enter
these statements into the program each time they
are required. A macro, once defined, will
automatically, during assembly time, place
reiterative code or similar code with changed
parameters into the assembler source code when
called by its macro name. The following sections
are devoted to explaining the process of defining
and calling macros, with and without parameters,
and describing assembler directives associated
with the use of macros.

Using macros, a programmer can gradually build a
library of basic routines, allowing variables unique
to particular programming applications to be
defined in and passed to a particular macro when
called by main programs. Such macros can be
automatically included in the assembly source
code of main programs using the .INCLD directive
(see Section 8.4.3) or read into the source code
during an editing session using the

READ FROM <filename> command (see Chapter 7).

8.5.1 Defining a Macro

The process of defining a macro involves preparing
statements which perform the following functions:

* Give it a name

* Declare any parameters to be used
* Write the assembler statements it contains
* Establish its boundaries

Macros must be defined before their use in a
program. Macro definitions within an assembly do
not generate code. Code is generated only when
macros are called by the main program. Macro
definitions are formed as follows:

MACRO mname [,parameters]

macro body

.ENDM
where:

a. .MACRO is the directive mnemonic which
initiates the macro definition. It must be
terminated by at least one blank.

b. “mname” is the name of the macro. It is legal to
define a macro with the same name as an
already existing macro, in which case the latest
definition is operative. Previous definitions are,
however, retained in the macro definition table
unless deleted from the buffer space by the
.MDEL directive (see below). The macro name is
used by the main program to call the macro, and
must adhere to the rules given for symbol
construction in Section 8.2.

c. [,parameters] is the optional list of parameters
used in the macro definition. Each parameter
must adhere 1o the symbol construction rules.
Parameters are delimited from “mname” and
successive parameters by commas.

The following are examples of legal and illegal
.MACRO directives:

Legal lllegal
MACRO MAC.A.B

Reason lllegal

.MACRO SUB,?1H Special character
used in parameter
-MACRO $ADD,OP1,0P2 .MACRO 1MAC,C.D First character of
macro name
numeric

.MACRO LIST $1 .MACRO MAC,25 First character of
parameter must be
alphabetic
.MACRO MSG3 .MACRO MSAC Special character
used in macro

name
d . The macro body consists of assembly language
statements. The macro body may consist of

simple text, text with parameters, and/or macro-
time operators.

e . The .ENDM signifies the end of the macro and
must be used to terminate a macro definition.

Simple Macros

The simplest form of macro definition is one with
no parameters or macro operators. The macro body
is simply a sequence of assembly language
statements which are substituted for each macro
call. Of course such identical macro calls are
inefficient if called repetitively within the same
assembly program — a repeatedly used series of
assembly language statements within a program
should be coded as a subroutine. However, simple
macros with no variables are useful in compiling a
library of basic routines to be used within different
programs, since, as mentioned above, they allow
the programmer to simply call the macro within the
program rather than repeatedly coding all the
macro body statements into each program when
needed. An example of a simple macro definition
follows:

i MACRO "INC2"” TO INCREMENT A 2-DIGIT BCD RAM CCUNTER
: WHEN CALLED, B MUST POINT TO A LOW-ORDER DIGIT OF
. COUNTER

.MACRO INC2 ; BEGIN MACRO DEFINITION

sC ; INITIALIZE C TO 1 TO ADD LOW-ORDER
. DIGIT

CLRA y ZERO TO A

AISC 6 ; BCD ADJUST RESULT IF NECESSARY

ASC

ADT ; IF RESULT > 9, LOW-ORDER DIGIT=0

XIS ; PLACE INCREMENTED DIGIT IN M,
; POINT TO HIGH-ORDER DIGIT

CLRA VZEROTO A

AISC 6 ; ADD CARRY, IF PROPAGATED FROM
; LOW-ORDER DIGIT TO HIGH-CRDER
; DIGIT

ASC

ADT ; BCD ADJUST RESULT IF NECESSARY

X ; REPLACE DIGIT IN M

.ENDM

Macros with Parameters

Obviously, the above macro could be made more
flexible by the addition of parameters in the macro
definition, allowing the programmer to specify the
low-order digit of the RAM counter to be
incremented in the macro call itself, rather than
relying on the instruction in the main program
which loads the B (RAM address) register with the
proper value before calling the macro. The
following is an example of the use of parameters
within a macro definition to accomplish this resuit:
i MACRO “ING2A” TO INCREMENT A 2-DIGIT RAM COUNTER

: THE LOW-ORDER DIGIT OF THE COUNTER IS REPRESENTED
; BY PARAMETERS “R","D"

-MACRO INC2ARD ; R,D=REGISTER #, DIGIT # OF LOW-
; ORDER DIGIT COUNTER

LBI RD ; POINT TO LOW-ORDER DIGIT OF
; COUNTER
sC ; INITIALIZE C TO 1 TO ADD TO LOW-
; ORDER DIGIT
CLRA ; ZEROTO A
AISC 6 ; BCD ADJUST RESULT IF NECESSARY
ASC
ADT ; IF RESULT > 9, LOW-ORDER DIGIT =0

XIS ; PLACE INCREMENTED DIGIT IN M,
; POINT TO HIGH-ORDER DIGIT

CLRA ZEROTO A

AISC 6 ; ADD CARRY, IF PROPAGATED FROM
; LOW-ORDER DIGIT TO HIGH-ORDER
; DIGIT

ASC

ADT ; BCD ADJUST RESULT IF NECESSARY

X ; REPLACE DIGIT IN M

.ENDM ; END MACRC DEFINITION

8.5.2 Calling a Macro

Once a macro has been defined, it may be called
by a program to generate code. A macro is called
by placing the macro name in the operation field of
the assembly language statement and the actual
value of parameters to be used (if any) by the
symbolic macro definition parameters. The
following form is used for a macro call:

mname [parameters]

where,

a. “mname” is the name previously assigned in the
macro definition.

b. [parameters] is the list of input parameters.
When a macro is defined without parameters,
the parameter list is omitted from the call.

A call to the simple INC2 macro, defined above,
would be expanded as follows:

Source Program
Before Assembly

Assembled Program
(shown without comments)

INC2

sC

CLRA
AlSC 6

) ASC
INC2 generates __) ADT
: XIS

CLRA
AISC 6
ASC

ADT

Note: The Macro call (INC2) as well as the
expanded macro machine and source code will
appear on the assembler output listing if a .LIST
directive with bits 2 and 3 set is placed in the
program’s source code (see Section 8.4.3). The
macro call statement (INC2) itself will not generate
machine code.

8.5.3 Using Parameters

As already indicated, the power of a macro can be
increased tremendously through the use of optional
paramelers. The paramelers allow variabie values
to be declared when the macro is called.

For example, the “parameter” version of INC2,
INC2A (Section 8.5.1), could be used to increment a
2-digit RAM based upcn the parameter values
specified in the macro call. The following macro
call illustrates the use of the INC2A macro to
increment a 2-digit RAM counter whose' low-order
digit is contained in RAM register 3, digit 14:

Source Program
Before Assembly

Assembled Program
(shown without comments)

INC2A
LBI
SC
CLRA
AISC [
ASC
ADT
SIX
CLRA
AISC
ASC
ADT
X

3,14
3,14

INC2A 3,14 generates >

When parameters are included in a macro call, the
following rules apply to the parameter list:

a.

b.

Commas or blanks delimit parameters.

Consecutive blanks are treated as a single
delimiter.

. A leading, following or embedded comma in a
string of blanks is treated as a single delimiter.

. A semicolon terminates the parameter list and
starts the comment field.

. Quotes may be included as part of a parameter
except as the first character of a parameter.

f. A parameter may be enclosed in single quotes
(), in which case the quotes are removed and the
string is used as the parameter. This function is
useful when blanks, commas, or semicolons are
to be included in the parameter.

. To include a quote in a quoted parameter, it
must be preceded by another quote (*).

. Missing or null parameters are treated as strings
of length zero.

Parameters Referenced by Number

“#" is a macro operator that references the
parameter list in the macro call. When used in an
expression, it is replaced by the number of
parameters in the macro call. The following .IF
directive, for example, causes the conditional code
to be expanded if there are more than 10

parameters in the macro call:
IF #>10

‘#N’ — Nth Parameter

8-22

When used in conjunction with a constant or
variable, the '# operator references individual
parameters in the parameter list. The following
example demonstrates how this function may be
used in defining and calling a macro to establish a
program memory data table:

.MACRO X i MACRO DEFINITION
WORD #1,#2,#3
ENDM
Macro Call Generated Code
X X'61,X'FF.X'90 WORD X'61,X'FF,X'90

This technique eliminates the need for naming
each parameter in the macro definition, particularly
convenient when long parameter lists are to be
used. It also allows powerful macros to be defined
using an arbitrary number of parameters.

8.5.4 ‘A’ — Concatenation Operator

The “A” macro operator is used for concatenation.
When found, the “A” is removed from the output
string and the strings on each side of the operator
are compressed together after parameter
substitution.

Example: .MACRO LABEL,X
RAX: \WORD 1
1AX: WORD 1
The Macro call:.
LABEL 0
generates:
RO: WORD 1
10: WORD 1

Another example of the use of this operation is
shown in Section 8.5.8 (Macro-Time Loop Example).

8.5.5 Local Symbols
.MLOC symbol[,symbol . .] [comments]

When a label is defined within a macro, a duplicate
definition results with the second and each
subsequent call of the macro. This problem can be
avoided by using the .MLOC directive to declare
labels local to the macro definition. In other words,
if a macro definition containing fixed labels is to
be called more than once during an assembly,
duplicate definition errors will occur unless the
.MLOC directive is used in the macro definition.

g

To illustrate this problem, consider the following
macro definition, intended for multiple calls in an
assembly, which does not use the .MLOC directive.
Since it is a multiple loop routine, jumping back to
the “CLRA” instruction, the inability to use a fixed
label referencing this instruction requires the use
of more complicated transfer of control
instructions (JP) referenced to the assembly
location counter (“."") and not to one label:

; MACRO “CLRAM" TO CLEAR ALL DIGITS (0-15) OF ALL COP420
; DATA MEMORY REGISTERS (0-3)

-MACRO CLRAM

LBI 3,0 ; CLEAR REGISTER 3 FIRST

CLRA

XIS ; EXCHANGE ZEROS INTO MEMORY DIGIT

JP =2 ; JUMP BACK TO “CLRA™ UNTIL REGISTER
; CLEARED

XABR ; REGISTER CLEARED, BRTC A

AISC 15 ; REGISTER 0 CLEARED?

JP .+3 ; YES, JUMP TO FIRST INSTRUCTION
» AFTER ROUTINE

XABR i NO, BR -1 TO BR

JP T ; JUMP BACK TO “CLRA” TO CLEAR NEXT
. REGISTER

.ENDM

Now here is the same macro (without comments)
using the .MLOC directive which allows the fixed
label, “CLEAR,” to be referenced by the JP
instructions:

-MACRO CLRAM
MLOC CLEAR

LBI 3,0
CLEAR: CLRA

XIS

JP CLEAR

XABR

AlSC 15

JP .+3

XABR

JP CLEAR

ENDM

The .MLOC directive may occur at any point in a
macro definition, but it must precede the first
occurrence of the symbol(s) it declares local. If it
does not, no error will be reported per se, but
symbols used before the MLOC will not be
recognized as local. Local macro labels appear in
the symbol table map at the end of the assembly
listing as ZZXXXX, where XXXX is a particular hex
number.

8.5.6 Conditional Expansion

The versatility and power of the macro assembler
is enhanced by the conditional assembly directives.
The conditional assembly directives (.IF, .ELSE and
.ENDIF) allow the user to generate different lines of
code from the same macro simply by varying the
parameter values used in the macro calls. Three
relational operators are provided:

= (equal)
< (less than)
> (greater than)

8-23

AF, .ELSE, .ENDIF Directives

When the macro assembler encounters a .IF
directive within a macro expansion, it evaluates the
relational operation that follows. If the expression
is satisfied (evaluated greater than 0), the lines
following the .IF are expanded until a .ELSE or a
.ENDIF directive is encountered. If the expression
is not satisfied (evaluated less than or equal to 0),
only the lines from the .ELSE to the .ENDIF are
expanded. See Section 8.4.3 for additional
information on the conditional assembly directives.

Example:

: SHIFT THE CONTENTS OF RAM ADDRESS R,D RIGHT IF
; N>0, LEFT OTHERWISE
MACRO SHIFT,R,D,N

LBl R.D

JIF N>0

CLRA ; SHIFT RIGHT IF N>0

SKMBZ

AISC

SKMBZ

AISC

SKMBZ

AISC

ELSE ; SHIFT LEFT IF N<O

LD

ADD

ENDIF

X ; EXCHANGE SHIFTED DIGIT IN A
; BACK INTO RAM

; POINT TO RAM DIGIT R,D

I SO T X

.ENDM

IFC Directive

Syntax: [label] .IFC stringq operator strings

[icomments]

Description: The .IFC directive allows
conditional assembly based on
character strings rather than the
value of an expression as in the .IF
directive. String1 and string2 are the
character strings to be compared.
Operator is the relational operator
between the strings. Two operators
are allowed: EQ (equal) and NE (not
equal). If the relational operator is
satisfied, the lines followng the .IFC
are assembled until a .ELSE or a
.ENDIF is encountered. The .ELSE
and .ENDIF directives have the
same effect with the .IFC directive
as they do with the .IF directive.

The primary application of the .IFC
is to compare a parameter value
such as #3 against a specific
string.

Example: JIFC #3 NE INTEGER

8.5.7 Useful Directives

.SET Directive
Syntax:

Description:

[label] .SET symbol, expression [;comments]

The .SET directive is used to assign
values to symbols (variables). A
variable assigned a value with the
.SET directive can be reassigned
different values an arbitrary number
of times (see Section 8.4.3). Set
variables are useful during macro
expansion to control macro-time
looping and macro communication.
To insure value correspondence
between pass 1 and pass 2 of the
assembler, all values in the
expression must be defined before
use in a .SET directive. If a value is
not previously defined, an error is
reported and a value of zero is
returned. For an example of use of
the .SET directive in a macro-time
loop, see Section 8.5.8.

.MDEL Directive

Syntax:

Description:

Example:
\ERROR Directi
Syntax:

Description:

[label] .MDEL mname[,mname . . .] jcomments]

The MDEL directive deletes macro
definitions from the macro
definition table and frees the buffer
space used by the definitions.

-MDEL INC2

ve
[label] ERROR [‘string'] [[comments]

The .ERROR directive generates an
error message and an assembly
error that is included in the error
count at the end of the program.
The directive is useful for parameter
checking in macros. For example,
the INC2A macro, defined in
Section 8.5.1, will put out erroneous
code, if written for a COP420
program, if R>3 or D>15, since the
COP420 has 4 RAM registers (0-3)
containing 16 digits (0-15) each. To
flag this condition with an error
message, the following .ERROR
directives may be included in the
INC2A macro definition:

.MACRO INC2AR,D

AF D>15

.ERROR ‘LBl WILL NOT WORK WITH D VALUE>15
ELSE

2k R>3

.ERROR ‘LBl WILL NOT WORK WITH R VALUE>3'
ELSE

LBI R.D

sC

CLRA

AISC]

ASC
ADT
XIS
CLRA
AISC
ASC
ADT

X
.ENDIF
.ENDIF
_ENDM

8.5.8 Macro-Time Looping

.DO and .ENDDO Directives

Syntax:

Description:

[label] .DO
[label] .ENDDO

count [;comments]
[;comments]

Macro-time looping is facilitated
through the .DO and .ENDDO
directives. These directives are used
to delimit a block of statements
which are repeatedly assembled.
The number of times the block will
be assembled is specified by the
.DO directive “count” value.
Following is the format of a
.DO-.ENDDO block:

.DC count

source

.ENDDO

Note: .DO, .ENDDOQ, and .EXIT are
defined only within a macro
definition.

The “X" macro described in the section on “#”
could be modified to generate a variable number of
words, using .DO and a loop counter.

.EXIT Directive
Syntax:

Description:

[label] .EXIT [;comments]

Early termination of looping in a
.DO-.ENDQO block can be etfected
with the .EXIT directive. This
directive allows the current loop to
finish and then terminates looping.
The .EXIT directive is commonly
used in conjunction with a
conditional test within a macro loop
which will exit from the loop if a
variable is equal to a particular
value. In such cases the .DO
“count” value is not crucial,
provided it exceeds the maximum
number of times the .DO loop will
be required or expected to be

executed for a particular macro
definition or for possible macro
calls.

Example of a Macro-Time Loop

The following examples show the use of the .DO,
.ENDDO, and .EXIT directives. The macro CTAB
generates a constant table from 0 to MAX where
MAX is a parameter of the macro call. Each word
has a label DOX:, where X is the value of the data
word.

-MACRO CTAB,MAX

SET X0

.DO MAX +1
DO X: .WORD X

SET XX+1

.ENDDC

ENDM

Now a call of the form:
CTAB 10

generates code eguivalent to:

SET X0
DOo: WORD X

.SET XX+1
DO1: WORD X

SET XX+1
Doz: WORD X

SET XX+1
D09: WORD X

SET XX+1
DOA: WORD X

Note: Care must be taken when writing macros that
generate a variable number of data words through
the use of the .IF or the .DO directives. If the
operands on these directives are forward
referenced, their values change between pass 1
and pass 2 and the number of generated words
may change. Should this be the case, all labels
defined after the macro call that has changed
values generate numerous assembly errors of the
following form:

ERROR DUP. DEF

8.5.9 Nested Macro Calls

Nested macro calls are allowed; that is, a macro
definition may contain a call to another macro,
When a macro call is encountered during macro
expansion, the state of the macro currently being
expanded is saved and expansion begins on the
nested macro. Upon completing expansion of the
nested macro, expansion of the original macro
continues. Depth of nesting allowed will depend on
the parameter list sizes, but on the average about
10 levels of nesting will be allowed.

8-25

A logical extension of a nested macro call is a
recursive macro call, that is, a macro that calls
itself. This is allowed, but care must be taken that
an infinite loop is not generated.

8.5.10 Nested Macro Definitions

A macro definition can be nested within another
macro. Such a macro is not defined until the outer
macro is expanded and the nested .MACRO
statement is executed, This allows the creation of
special-purpose macros based on the outer macro
parameters and, when used with the MDEL
directive, allows a macro to be defined only within
the range of the macro that uses it.

8.6. Example of Creating and Assembling a
User Program

The following example illustrates the basic process
of creating an assembly language file and, after
checking for errors, assembling the user program
file. The use of a diskette containing the PDS main
programs EDIT, LIST and ASM with the volume
name “1” is assumed. The user program given is a
sample display/keyboard debounce-decode program
similar in most respects to a program treated in
detail in Section 5.3 of the COP400 Microcontroller
Family Chip User's Manual. This program
illustrates typical usage of some of the most
commonly used assembler directives. The use of a
GCRT console and high speed printer is assumed.
The assembler input file, DSPLY.SRC, as well as
the output file, DSPLY.LM, are written to and read
from the same diskette containing the system main
programs mentioned above, disk 1.

Creating File DSPLY.SRC

Assuming PDS has been initialized and the EXEC
program is currently in use, the user creates the
DSPLY.SRC assembly as follows:

1. Invoke the EDIT program:

X>@EDIT .
EDIT,REV:A
E>

2. Next, enter the disk-edit mode, creating a new
filename, DSPLY.SRC. (The EDIT program
displays the number of available sectors on the
DISK.):

E>E DSPLY .

CREATE NEW FILE (Y/N,CR=YES)?
AVAILABLE SECTORS (# of sectors)

E>

3. Enter input mode and insert assembly language
statements as shown in Figure 8.2. After
entering a line and pressing a carriage return,

EDIT will re-prompt with the next line number
followed by a “?":

-

1 TITLE DSPLY,'COP420 DISPLAY DEMO' (GR)
»

source code

2297 END(CR)
2307 [CA)
E>

. Exit input mode by pressing CR and finish the
edit, writing the assembly language file to the
disk, catalogued as DSPLY.SRC:

E>F

FINISH CURRENT EDIT (Y/N,CR = YES)? (CR)
B>

. If the user desires, the first debug of the entered
code may be performed by using the LIST
system program to obtain a listing of the source
code to verify proper format and content of the
assembly language statements prior to an
assembly. The following command calls the LIST
program and outputs a listing to the line printer
as shown in Figure 8.2, unformatted except for
line numbers:

E>@LIST DSPLY.SRC PR NE NH NP (CR]
LIST,REV:A
(Listing now begins.)

. Having verified the assembly language
statements contained in DSPLY.SRC, the user
may perform a limited assembly of the program,
obtaining only an error listing on the CRT to
determine if any edits are required as indicated
by the error message output to the CRT. The
following command calls and invokes an

8-26

assembly of DSPLY.SRC, outputting an error
message listing as shown on the CRT. (If any
errors had been encountered during the
assembly, the line numbers, assembly language
statements and type of errors would be
displayed as well as the count of the total
number of assembly errors.):

L>@ASM | = DSPLY,0 = DSPLY,L = *CN,EL (CR)
ASM,REV:A
END Pass 1 {Error message listing follows.)
COP CROSS ASSEMBLER PAGE 1
DSPLY COP420 DISPLAY DEMO
NO ERROR LINES
227 ROM WORDS USED
END PASS 2 g
SOURCE CHECKSUM = D7A7
OBJEGT GHECKSUM = 0529
INPUT FILE 1:DSPLY.SRG
A>

If error lines had been displayed, the user may
have been able to determine from the error
message definitions the proper edits to make to
the source code without the need for a complete
assembler output listing. If not, to obtain a
complete assembler output listing, the following
command would be entered on the console:

A>I=DSPLY,.L="PR .

. After obtaining an error-free assembly, the user

can create a load module file for loading into
PDS shared memory for debugging and obtain a
full output listing on the printer as follows:

A>| = DSPLY,0 = DSPLY,L = *PR(CR)

CREATING FILE 1:DSPLY.LM

END PASS 1 (Listing begins to printer.)

END PASS 4

A>

Figure B.3 provides a complete assembler output
listing for an assembly of DSPLY.SRC.

3 O G R e

Rl RN Rl |

Lo 00 £ ur 00 0 D 0 G B BB BRI RS R
U I | R T SR ey

)

a

P b
[,

BB B
(6 RN Y XN

i
or

L=
4%
=0

CTITLE DEPLY, "COFPAzZ0O DISPLAY DEMO-
ZOF AZG DISPLAYSEEYROAGRD DEROUNCE /DECODE ROUTINE
P DISFLAYS 14 BCD DIGITS CONTAIMED IM MO, 14) THROUGH
pMO0, 13, HIGH-ORDER TO LOWN-ORDER, RESFECTIVELY
s DECIMAL PIINT FPOSITION VALLIE CONTAINED IN MO, 15).
PDIGIT POSITION VALUE CONTAIMED IM M1, 15
i TEMFORARY STORAGE OF 4 BITS OF SEGMENT DATA IN M(E, 14)
P EEYROARD DERDUNCE COUNTER (KBC) CONTAIMED IMN MOZ, 15)
P SEVEN-SEGMENT DECODE ROM LODEDF DATA CONAINED IN PAGE
4. WORDS &~ F
i KFEYSTRAFP DATA TIED TO Di4-D1Z LINES FPLACED IN M(1.14)
P THROUGH MO1. 133
JEXTIT TO FEYDECODE ROUTINE AFTER DEEOUNCING KEYSWITCH
P CLOSUIRES WITH DIGIT VALLIE IN MO1.15) AND G PORT DATA
s IR AL

.EPACE S JLEAVE 5 BLANK LINES ON LISTING

. PAGE v]

DIGIT =513 15 FASSIGN VALUE 1,15 ToO "DIGITH

STORE = 2. 14 P ASSIGN VALUE 2,14 TO "STORE"

KEL = 3,15 P ASSIGN VALUE 2, 15 TO "KRCH

CLRA i FIRET INSTRUCTION MUST BE A “"CLRA"
START: JER CLRAM i CLEAR ALL RAM

LEI G, 14
LDORAM: CEA

XDE s LOAD DISPLAY REGISTER WITH NUMBERS

ild - 1

JF LIRAM
2 ol 51 15 ;SET ALl G PORTS HIGH

LEI HEC FPOINT TO MOz, 15))

A B R 15 il T ERE
DEFi

LEI o, 14 P NG START DISPLAY AT DIGIT 14
DERZ: CEA sDIGIT POSITION TO A

XAD OiGEIT i STORE IN M{1l,13)

CLR&

AIEL 4 FSET AZ TO FLIFP T PAGE 1 FOR LOOKUR

LEI 8 BLANE, SEGMENTES (REZET ENZ)

LizID P LOOKLF TAELE SEGMENT DATA TO @

LEI DIGIT i POINT TO DIGIT POSITION

Lo 1 SOIGIT FOSITION TO A POINT TO

s DECIMAL FOINT FOSITION DIGIT TO A

SKE s DECIMAL FPOINT = DIGIT POSITIONT

JFF NZDF pND, RESET DECIMAL POINT BIT IN &

CLRA

ALSC 4

JF el s DELAY % INSTR, CYCLE TIMES
DIGOUT: LEI DIGIT GPOINT T DIGIT FOSITIONN

LD s DIGIT POSITIONSTE A

CAR JDIGIT POSITION TO BD

BT JIOUTRUT DIGIT VaLLE

Figure 8.2. DSPLY.SRC Source Code

8-27

=1

<020 0 00 00 00 00
SO LR B S ISR Y

40 g
1B -

8

iy

£
B

e
[

£
il

@7
o8
G
100

LET 4
LEI kB
ING

ATSC 1
M FEYDWN
CLRA

ALSC =

JF)
LEI KEZ
JHF NRDY
. FoRM

. FAGE i

P WORDS O-F EGQUAL SEVEN-S
st (e = P RS -
s SENT LUFON LOOKUFP TO Q{7
s HEX VALLE FOR ASCIT CHA
i PLACED IN SUCCESSIVE LO

EPACE. 5
. WORD X“FD
. WORD X761
. WORD X DOE
S WORD X“F3
. WORD X &7
- WIORT X<B7
. WORD X 2F
. WORD X“El
. WORD XFF
. WORD XE7
. WORD i
. WORD X“EF
. WORD X 7D
. WORD X2
WORD 1Tg8F
WORD X700
DEBOIIN:
SkMEZ &
P ALLLIF
SkMEZ 2
JF ETR
DECKEC: ADD
S5TR: X
SME i)
JHF DErPl
ALLLIF: SWMEZ o
JF DECKEC
ALSC 4
NOF
JF STR
EEYDWN: LDD DIGIT
ATSC 4

o

i OUTFUT SEGHMENT DATA {SET ERZ)
PFRANT TOE KR
i~ B PERTE STy
iALL G PORTS STILL HWIGH (=

1= 7

PNO, JUMP TO "EEYDOWN" ROUTINE
P YES, HELAY- 1S INSTR: " EYCIESTIMES

s BACK TO FREVIOUS INSTR. UNTIL SKIF

RN FER T

EGMENT DECODE LOOEUF DATA TAEBLE
=14}

¥ = o), HRESPECTINVELY

RACTERS & — 2, F, A, U O F) BLANK

CATIONS BY . WORD" LIRECTIVE

s LEAVE 5 ELANK LINES ON LISTING

i =0 {(7-SEGMENT DECODE HEX VALLUES)

ORIV AT) N VU SO

(L | sl o 0 A | 0 M ! R T |

e ¢ s i B

Sihe=s 1B 2D BTORE I IN KEE
i DECREMENT KEC
i FLACE A IN RBEC

{ BT LERE R R R

DO DISPLAY LOOF OVER AGAIN
iNRE = 17

= g
m
in

P YES, DECREMENT KBD {(A=15)
PNO, SET KBC = 11
YHEFEAT “YAISCM SKIF

sDIGIT POSITION TO A

JDIGIT POSITION > 11 (STRAF DATA) 7

Figure 8.2. DSPLY.SRC Source Code (continued)

8-28

-

101
1652
103
104
105
104
1 5o
10
109
110
TE1
117

114
115
114
147
1ie
1 1ise
120
g
: e
122
1z4
125
124
127
1zg
1E
K]

(VR 0
=

RN [SR N

Pt e et e e ek e ek et ek
G D G0 £ 50 D0 00 0 g

e
Eo
=

R

H
s
[

s

,...
'S

-
S
L]

144
147
142
14%
150

JF EBCTST 5 NO
ATEC 1z s YES, RESTORE STRAF DIGIT VALUE
CAER i STRAF DIGIT FOSITION TOD EBD
CLRA
AISC i
LAER i1 TO BROFPOINT T STRAFP DATA REG. 1)
ING i STRAF DATA TO A
X s FLACE IN AFFROFRIATE DIGIT, REG. 1
P NRLIY
KECTST: RME = v RESET LF EIT OFF KEEL
CLRA
ATSE a SLEEAY 5 TNSTR = EXCLE TIMES
JF == i REPEAT PREVIOWS INSTR. UNTIL SKHIF
CLRA ;0 TD A
SKE JEBC = 07
JHE NRDY i MO
LETL (] i YES, BLANK SEGMENTS
ING i GO PORTS TO A
LEI DIGLIT JFOINT T DIGIT VALUE
JME KEYDEC JUMP TO EEYDECODE ROUTINE
. FORM
. FAGE 2
CLRAM: LEI 3.0

CLEAR: CLRA

XIs

JF CLEAR

XABR

AISC 15 s REGISTER O CLEARED?

RET i YES, RETURN

XAER i ND. ER -1 TO BR

JF CLEAR
ELANE: CLRA i PLACE "F"S (DISFLAY BLANEE) IN A

i RAM REGISTER

ATSC 15

XIS

JF ELANE

RET

. FORM i FORM FEED

. PAGE &
PFOLLOWING CODE USES CONTENTS OF A AND M, EEYSWITCH CoOLLUMN
 AND ROW CLOSURE DATA, RESFECTIVELY., 0ON EXIT FROM DISFLAY
s ROUTINE, TO ACCESS ROM FOINTERS TO JUMP TO EEY1 - KEY1é
s DECODE ROUTINES. LABELS “KEY1Y" THROUGH “"KEY14&" MUST
P BE LOCATED WITHIN PAGES 4 THROUGH 7

SFRCE - 5 i FIVE BLANK LINES ONM LISTING
KEYDEC: COMP i COMPLEMENT A S0 THAT BIT=1
i INDICATES KEY CLOSURE
JID0 i JdUMF TO EEYDECODE ROUTINE FOR
i PARTICULAR KEY CLOSURE
= X111 P MOVE ASSEMELER LOCATION

Figure 8.2. DSPLY.SRC Source Code (continued)

8-29

151 JCOUNTER T2 EEYL1 ROM POINTER ADDRESS

152 . ADDR KEY1 iFLACE KEY1 FOINTER IN ADDRESS X 111 =
153 . ADDR LEYZ s PLACE KEYZ-KEY4 FOINTERS IN NEXT
154 . ADDR KEYZ s ROM LOCATIONS
1k . ADDR KEY4 -
154 s i e PMOVE TO EEYS POINTER LOCATION
152 . ADDR KEXYS
15& . ADDR KEY & 2
152 ADDR KEYZ
140 . ADDR KEYS
141 o= X7141 P MOVE T KEYS POINTER LOCATION
142 - ADDR KEY® i {FAGE 5)
e . ADDR KEY1O
144 . ADDR FEY11
165 . ADDR KEY1Z
144 .= XT1st PMOVE TO KEY1Z POINTER LOCATION
167 . ADDR KEY13 i (PAGE &)
1é&2 . ADDR EEY 14
149 . ADDR EEYLS
170 . ADDR FEY 14
L7l =kl e OMNE i GO, DL KEY
e E TWO i E0L DE EEY
173 FEYZR: JME THREE 30, D3 KEY
174 KEYA4: MF FriR i G0, D4 KEY
T R A FIVE G101l KEY
174 REYE: IME S1X% 1G4 D KEY &
177 BT JME SEVEN Y, O KEY —
178 HEwc: JHP EIGHT iG1, D4 KEY
179 EKEY®: mE NINE EEs DS KEY
180 Rt o M TERN 3 U2 KEY
= S v o AP ELEVEM | GZ, D3 KEY
LE s o AME TWELVE ;GZ, D4 EEY
18z KEYLIZ: JrE THIRTMN ;G2 D1 KEY
124 KEY14: JHE FOURTH KEY
TEa HEWS JME START ; KEY
186 EEYIS: JMF START H EEY
187 hHiRby: LDD DIGIT sDIGIT POSITION TO A
=iz AISC 14 JLAST DIGIT DONE (A = 1)7
182 JrE DEROUN YES, JUMP TO DEROUNCE ROUTINE (A=15)
120 Also 1 i NG DECREMENT DIGIT FOSITION VALUE
123 LEI (RPN i FOINT TO DISFLAY REGISTER ©
3 aed (AT sDIGIT POSITION VALUE TO EBD
123 CLRA
124 ATSC 4 s DELAY % INSTR.. TIMES
1595 JF el s REFEAT PREVIOUS INSTR, UNTIL SEIF -
194 HE DRz i DISPLAY NEXT DIGIT
127 - NAEF; LEI STORE F POINT . TD MOZ, 15)
12 e icE=gb. 0. F. TO A .
et X s EXCHANGE INTO MCZ, 15}
200 RIFE O sRESETDL P, BIT (DECIMAL POINT OFF)
-

Figure 8.2. DSPLY.SRC Source Code (continued)

8-30

CAMC i SEGMENT DATA BACK TO &

JMF DIGOUT
SFORH
. PAGE 7

OINE - LEI sl

TWO: LET 0, 2

THREE: LEI 0, =

FOUR: LEI 4

FIVE: LEI o, 5

I LEI o6

SEVEN: LEI Oy 7

EIGHT: LEI O, 2

HINE: LEI O, %

TEN: LET o1

ELEVEN: LEI 5

THELVE: LE1 O b2

THIRTN: LEI Q13

FOURTN: LEI 0, 14
CEA
XA0 1.9 ;i SAVE KEEY NUMEER
LET 0,0
JER EBLANE s BLANK, DISFLAY REGISTER
LT (er (5]
LDD 1,9 P KEY NMEER TO A
CRE
X i KEY MUMEBER TO DIZFLAY REGISTER
i DEFLY
. END

Figure 8.2. DSPLY.SRC Source Code (continued)

8-31

R =l 1 OEL &y ¥ (IBISER. EBYELE TIMES

DIGOUT: LEI DIGIT PECENE SO BIGT T - FOS T GG
LD i DIGIT POSITION TO A
CaE DIGIT POSITION TO ED
(micin} JOUTPUT DIGIT WaLUE
EET 4 i DUTFUT SEGMENT DATA (SET ENZ)
LET [EI i POINT 7O KRC
IHG P GEBURTEE T A
OIS 1 i ALl G PORTS STILL HIGH (s 1517
SdEE FEY DR P ND. JUMFP TOD "EEYDOWN" ROUT INE
CLR&
AT = P ¥YES: TELEAY 12 INSTR S EXYEIE FIMES
JF =1 s BACK TO PREVIOUS INSTR. UNTIL SEIP
LET KRB
AMP MNRDY

1
7

Figure 8.3. DSPLY.SRC Assembly Output Listing (continued)

8-33

i

e

& O~ i
DL Il R

o

40
0d1
04z

LV E e

(a4
045
Q44
047
Q4
Qs
[l ¥=]
04
iz

Z 040
Q4E =

04E

050
051
ODE
053
054

055

sislaT

a57
Q5
25A
QSR
{11
k]
CIBE
[ATXs
O]

: Q&2
£ o]

044

Q&5

o Cadet

7 QET 2

O

OOO5

il
s
4
AODE
e
o4
=4
44
o5
ZElE
549
EE
o
50
O
b
bl

. FORM i FORM FEED

-

. FAGE i
s WORDS O—-F EJAL SEVEN-SEGMENT DECODE LODKLF DATA TARLE
B s A= [B SRR B
SENT UPCHSECEEIRSSRES e 7) =it)y - RESFECTIVEL Y.
s HEX VALLE FOR ASCII CHARALTERS O - 9, F, A, U, C, F, BLAKNK
i FLACED IR ; IVE LOCATIONS BY < WORDY DIRECTIVE:
caERnET i LEAVE 5 BLANK LINES ON LISTING

WORD X-FD 3 =0 (7=-SZEGHMENT DECODE HEX VALUES)
C WORD Xkl i1
WORD X DB ;=
. WORT . e i e
. WiZRD X &7 ;o=dl
. WORD b B i =3
. WORD X oEE j =
. WORD X= i =7
WORD o ;=8
. WORD L ;o
- WORD X i =F
. WORD X i =8 -
WORD X ;=
. WORD X =1
WIIRTH g0 P =
CWORD X i =ELANE
DERCHIN:
SHMEZ 3 JUP BIT = {%
JF ALL LR i ¥ES
SHEMEZ e iRd, NRE = 17
JE ETR iYES: A = 15 S0 STORE IT IN ERC
LB ADD P DECREMENT KEC
STR: X iPLACE A IN KEC
SHE o JSET UP BIT OF EEC
migis DsFy ;DD DISPLAY LOOFP OVER AGAIN
ALLLIF: SEMEZ 2 iNRE = 17
JE DECEEC : YES, DECREMENT KBZ (A=15)
Alsc 4 PN, SET REC = t1
HOF i DEFEAT "“AlSC" SHIP
= ETR
KEYDWNN: LDD DIGIT S DIGIT POSITION TO A
AT 4 s DIGIT POSITION » 11 (STRAF DATAY T
JFP KECTST 5 N
ATS 12 i YES, RESTORE STRAP DIGIT VALLE
CAE P BTRAF DIGIT POSITION TO ED
CLRA
ATSC 1
XAER i1 TO BROPOINT TO STRAF DATA RES. 1)
ING s STRAF DATA TO A

Figure 8.3. DSPLY.SRC Assembly Output Listing (continued)

8-34

OB 08T 04
wiow
110
i1i
b
b
114
3]
114
Ll
11e
119
120

o
]
roe

N T T e

DO TN (LR VN TS ST (U SN B

)

i ST CA I

(RN GRS

-

R Rl I = Y B

Db

OAH &1AS
Q&L 4%
QAL O
QsE of
(ki i Sl
70 OO
e]
Q72 A1ADS
o4 3260
Q7L =
e |
CHFSe

QOS0
080 3F
DEl 00
08z

JHF

EEBCTST: RME

CLRAM:
CLEAR:

B ANk

CLRA
ATSC
JF
CLRA
SEE
JME
LEE
TG
LEBI
JME

FiRM

. FAGE
LEI
CLRA
X1s
JP
AR
ALSC
RET
XAER
JE
CLRA

ATSD
Xiz
JF
RET

NRDY

r

DIGIT
EEYDEC

BLAME

s FLACE IN APPROFRIATE DIGIT,
i REGET LiF BIT OF KEC

s DELAY 5 INSTR. CYCLE TIMES

+ REFEAT FREVIOUS INSTR. LUNTIL
i TD A

P KEBC = 07

i NO

i YES, BLANE SEGMENTS

i O PORTS TO A

PPOINT TO DIGIT VALUE

pdUMF TO EEYDECODE ROUTINE

i REGISTER O CLEAREDT
;s YES, RETLIRN
s ML SERI=4TO BR

i PLACE "F"Z (DISFLAY BLANES)
i RAM REGISTER

Figure 8.3. DSPLY.SRC Assembly Output Listing (continued)

8-35

REGE]

SKIF

IN A

179
120
121
122
182

124

181
182
152
184

£S5
187
189
1EE
120
1EF
191
193
195
197
199
19
190
19F

55 Ha T

OO0s

il
Lriey
o141
on

2

R~

245

D121
Ly

S

Al

Az

H1CO
Gl
&104
&ILA
AHLCE
H10A
&I
A1CE
A LD
A1D01
AL1DE
1073
104
&HID5

. FiORM ELIRM S BT

. PAGE 4

sFOLLOWING CODE USES CONTEMTS OF A AND M, KEYSWITCH COLUMN

i AND

ROW CLOSURE DATA. RESPECTIVELY, ON EXIT FROM DISFLAY

PROUTINE., TO ACCESS ROM POINTERS TO JUMF TO KEY1 — KEY14
i DECODE ROUTINES. LABELS "KEYL" THROUGH "KEY1iA" MUST
i BE LOCATED WITHIN PAGES 4 THROWGH 7.

S BEACE 5 s FIVE BLARMK LINES OM LISTING

EEYDEC: COMP i COMFLEMENT A S0 THAT EBIT=1

KEY1:
KEYZ:
KEY3:
FEY4

EEYS:
KEY#A:
KEY7:
KEYS:
EEYS:

KEY10:
KEY 11
KEY12:
KEY13:
KEY14:

;s INDICATES KEY CLOSURE

JIL DJUMF TO KEYDECODE ROUTINE FOR
FARTICULAR KEY CLOSURE
= X"111 MOVE ASSEMBLER LOCATION

COUNTER TO KEYL ROM FPOINTER ADDRESS
FLACE KEY1 POINTER IN ADDRESS X111
FLACE KEYZ-KEY4 POINTERS IN NEXT
ROM LOCATIONS

. ADDR FEY1
. ADDR KEYZ
. ADDR KEYZ
. ADDR EEY 4
s e] G,
. ADDR
. ADDR FEY&
. ADDR KEY7Z
ADDR KEYS
= X"141 MOVE TO KEYS® POINTER LOCATION
- ADDR KEY® P APAGE 5)

ADDR KEY 10
. ADDR KEE¥Y11
. ADDR KEY1Z

= X 1&1

ADICR KEY 1=
. ADDR KEY 14
. ADDR KEYiS
. ADDR KEY 14
AMF ONE

MOVE TO EEYS FOINTER LOCATION

MOVE T KEY1E POINTER LOCATION
{FAGE &)

i 150 [- KEY
MF T i 60, DZ REY
JHE THREE i GO, D3 REY
S FOLR i G0, D4 KEY
MF FIVE vzl Ol EEY
JHE SIX i31, DZ EEY
JMF SEVEN 31, D2 KEY
ME EIGHT G, D4 KEY
E NINE i@z, 0l REY
ME TEN i G2, DE KEY
JME ELEVEN i GZ:, Ba KEY
ME TWELVE ;GZ.D4 EEY
F SHIREL - B Ok EY
JMF FOURTN G2, DZ KEY

Figure 8.3. DSPLY.SRC Assembly Output Listing (continued)

8-36

125
184
187
12
18¢%
120
191
192
193
194
1 55

176,

197
128
199
200
201
Pl €

20

205
Z06
207
z02
209
Z10
211
21z
4 e
14
215

214

I
-
-

zig

o
)

AR

T I G G O SR G A N S

BB RRRD B

RO IS B S B S R

1A1

1A5
1A7
1as
1AA
1AL
iAac
1AD
1AE
1AF
1BO
1Bz
1BZ
iES
1E4
1E7
182

ico
icz
icd
1064
1ce
1CA
161

ICE 33

1no
101
1Dz
10z
iD4
105
104

o7

1o%
1oA
ioc

1DE 2.
10E !

1EQ
55 3

AHQOD1
A0
Z31F
5E
=050
51
OF
715
00
54
Ete
£QOEC
D
BEEL
(BT
ar

@
ok

]

b L)
0y

0 0t L O (0 o

R S R

EEY15:
KEY1&:
MNRIY:

NODF:

ONE:
TWO:
THEEE:
FOLUR:
FIVE:
SIX:
SEVER:
ELIGHT:
NINE:
TEN:

ELEVEN:
TWELVE:
THIRTHN:
FOURTH:

Figure 8.3. DSPLY.SRC Assembly Output Listing (continued)

JHE
HE
Lon
ATsC
JHE
AISC
LEI
CAE
CLRA
AISC
AR
JHP
BT
COMA

RME
CEME
JMF

. FORM

. PAGE
LEI
LEI
LEI
LET
LEI
LEI
LET
LET
LEI
LE1
LEI
LEI
LEI
LEI
CEA
XaD
LET
JER
LET
LoD
CAER
x
JME
END

START
START
DIGIT
i4
DEEDIN
1

G0

4
s oh

LEFZ
STORE

o

DIGOUT

@
0 N U) R

'
=
L]

11
LB

L8
014

1. %
o, 0O
ELANE
0, 0

1%

DSFLY

8-37

P 53, 02 KEY
i 33, D4 KEY

s DIGIT POSITION TO A
s LAST DIGIT DONE (A = 107

s YES, LJUMF TO

DEEOUNCE ROUTINE

(A=15)

i NO, DECREMENT DIGIT FPOSITION VALLUE
sPOINT TO DISPLAY REGISTER O
fDIGIT POSITION VALUE TO ED

#UELAY C NS TRESTIMES
i REFEAT PREVIOUS INSTR. UNTIL SKIF

s DISFLAY RNEXT
i POINT 70 MOz

DIGIT
15)

i SE=E2G, D P TO A
i EXCHANGE INTO MOZ, 15)
i RESETD. FP. EIT {(DECIMAL FOINT OFF)

i SEGHMENT DATA

BACK TO @

i SAVE KEY MNUMEBER

i BLANKE, DISFLAY
i KEY NUMEBER TO

s EEY NUMBER TO

REGISTER
a

DISPLAY REGISTER

ALLIIE 05 ELANE

LDEBOLN 0050 DECERC
nsF1 [alulnic]] =ged
ELEVERN O1DZ FINVE
KELC O0ZF KECTST
FEY11 oOl#% KEY 12
KEYLS « glmE FEY 14
KEY 4 012k KEYS
KEYE 5 R KEYS
LODRAM Q004 NINE
IINE GLCO SEVERN
STORE OOZE STR
THREE OiC4 TWELVE

N ERROR LINES

227 ROM WORDES LUSED

SOURCE CHECHESUM = D7FOG

INFUT FILE

FISTINE - FEEES 12 NISFL Y

13 BEPLY.

QoD
Q0546
OO0
L5 A=
O
19k
1Az
olan
125
QLoo
Gros
OOB5
10Dz

CLEAR
DIGIT
SEL Y
FilR
EEYL
FEY 13
KEYZ
KEY&
KEEYTEC
NODF
SIX
TER
TR

[BINI=H1
OOlF
QOO7
OLlCH
Olas
o1en
als7
olaF
100
QlEZ
QICA
o101
017

CLRAM
DIGOUT
EIGHT
FOURTRN
KEY10
KEY14
KEY 2
KEY7
KEYDWN
NRDY
START
THIRTN

Figure 8.3. DSPLY.SRC Assembly Qutput Listing (continued)

QOED
001
OILE
105
Q17
BUE
olaw
0191
DOSE
O1AS
Qo0
2104

COP Monitor and Debugger

(COPMON)

The COP Monitor and Debugger (COPMON) is a
PDS system program which contains an extensive
set of debugging commands. These allow the user
to easily check out and develop COP programs and
systems using the COP Emulator Card and shared
memory. (See Chapter 2.)

9.1 COPMON Capabilities

COPMON allows the user to interrupt the COP’s
execution of a program on one of several
conditions and examine all COP internal register
data at each interruption. This is called a
breakpoint. COPMON also allows the user to
examine the program path of the COP, recording up
to 253 steps (adresses) before or after a specified
condition. This is called a trace. Conditions for a
breakpoint or a trace may be a specific address
(address), the next value of program counter
(immediate), or any combination of two external
inputs on the emulation card called EXT2 and EXT1
(EXT EVENT). For a complete description of the
emulator card see Section 2.3,

The TRACE command allows the user to specify
which cendition the TRACE will begin on and how
many program steps previous to that condition to
record. The GO command then executes the TRACE
operation. After a TRACE, the user may examine
trace data with the TYPE command or search for
an address in trace memory with the SEARCH
command. These commands allow the user to
compare the actual step sequence with the
expected step sequence, and to easily spot all
occurrences of any given address.

The BREAKPOINT command allows the user to
specify up to ten conditions on which to interrupt
the COP's execution. Only one condition is tested
for at a time (see BREAKPOINT Command). When
the COP is breakpointed, the user may examine all
the COP registers and RAM, as well as the values
of the input lines. This information is also available
after each single-step. Thus, the user may compare
the actual breakpoint information to the expected
values at any step or occurrence of any condition
in the program. Such information allows the user to
easily identify errors and check logic. For further
information on the system software and hardware
associated with COPMON, see Section 2.3,

91

A typical debugging session may go as follows:

1. The faulty program is loaded into PDS shared
memory either from the disk or from PROMs.
The user may wish to examine the contents of
shared memory at this time.

2. A TRACE operation is performed and trace
memory is examined to determine where the
actual execution sequence deviated from the
desired execution sequence.

3. Breakpoints are performed around the address
in question and breakpoint data is examined to
discover the cause of the error. The user may
wish to single-step through the problem area, or
set breakpoints on specific conditions.

4. If a possible error is discovered, shared memory
may be altered to correct the error or to ajid in
identifying the error. Steps 2-4 of this example
may be repeated until the program executes
properly.

5. New PROMs may be programmed with the
revised program in shared memory. For a
concise list of the alterations, the COMPARE
command may be used to compare the old
PROMSs or disk file to the new program in shared
memory.

COPMON allows the user to reset the chip or
restart the chip at any address, allowing the
breakpoint and trace operations to be used easily
and effectively. Breakpoint and trace may not
operate simultaneously. The COP may run from
shared memory or the PROMs on the emulator
card. When running from the PROMSs, shared
memory must have the same data as the PROMSs in
order for breakpoint to operate correctly. COPMON
allows the user to select either of these run modes.
The STATUS command allows easy inspection of
COPMON'’s basic operation parameters. COPMON
can be loaded and executed from the console or
the front panel. The first part of this chapter will
describe operation from the console; the second
part will describe operation from the front panel.

9.2 Console Operation

To call COPMON from the console, the user types
in the @ command, obtaining the following
responses:

X>@COPMON

COPMON,REV:C DATE
CHIP NUMBER (DEFAULT = 420)7 XXX

The user then enters a three-digit number (“XXX"
indicated above) which represents one of the valid
chip numbers listed in Table 9.1.

Tabla 9.1. Valld Chlp Numbers

Memory R_ugl_nur '
Chip# Size - Address :
410411 0-XFF . X0-X3 -x'ﬂ,-X’_s:ux'is.. o
420421 O-XIFF X'0-X3 X0-x15 - 01
4401444 CDXTEE WD Waiwis o pa

The chip number is used by COPMON to select the
correct instruction subset, memory size and
register size. If no number is typed after the chip
number prompt, COPMON defaults to the COP420
after the carriage return. Otherwise, the valid chip
number typed by the user is used. Each subsequent
time COPMON is loaded, it will use the last valid
chip number specified by the user or, if no number
was previously specified, the default COP420
number. The chip number may also be changed
with the CHIP command described later. After the

Command Name

mgER [{ADDW’]LKVALUE)]
AUTOPRINT [<PAINT OPT>[<PRINT OF -
 BREAKPOINT 1{@0ND>(:<00N0_> JI[<OCCUR #> <sap-r>]] :
QL_E'AR e
CHIP e <cHP#® -
- COMPARE KFILENAMD JIKBLOCK #5, <PF!GM m& o
. DUMP - | <PROMTYPE><BLOCK #> :
DEPOSIT <VALUE><ADDR RANGE>
FIND | <VALUE>[<ADDR mﬂeﬁx.azmsbn
Go | KADDR3}
LisT |<ADDR RANGE>]<ADDR nmsrs:»
LOAD <FILENAME> [<0>]
MODIFY <print opt><value>|, <value1>
NEXT KGOPT>] o
PROGRAM KFILENAME> KBLOGK #> <PROM TYPE>
T [KADDR>][<INSTRUCT>[<INSTRUCT> ..]
RESET Y fuid . Sl :
SINGLESTEP [KGOPT>]
SEARCH <ADDR>
SHARED MEM <YN>
STATUS :
TIME [<eond1>[<occur t>]f<cond2>[<occurZ>]
TYPE [<PRINT OPT>].<PRINT OPT> . .]}
TRAGE [<COND>{<OCCUR #>]<PRIOR>],<GOPT>]I
UNASSEMBLY <YIN> .

user responds to the initial chip number prompt,
COPMON responds with the COPMON prompt
symbol, “C>."”

Example:

CHIP NUMBER (DEFAULT = 420)? 444
c>

COPMON responds with the prompt after the
execution of each command. Prompt mode is also
indicated on the front panel by the presence of the
blinking rightmost decimal point light. From the
prompt mode the user may enter commands from
either the console or the front panel.

9.3 COPMON Console Commands

The COPMON console commands are summarized
in Table 9.2 and are described in detail below.
Commands may be abbreviated to one or two
characters as indicated by the underlined
characters in Table 9.2, Command options are
defined in Table 9.3.

Alter 'éhi(aﬁ'mamm 93
Sa‘t Prin: Oplions 94
: Oiea race and Brnm:f:roi’n(Enabte Fbaga ey :
e Sei m' Disﬁlay Chip Number e 94
e Cam’pam Dma : 94
~ Dump PROM 95
Dsmsﬁ Value in Shared Memory 85
pmu Value in Shared Memory las
. Begin ExecuHon : 95
: Llsﬂ smared N!emory i 96
 Load Shared Memory from Flle 96
; Modify Dhip Hagisters o 96
Breakpolﬁi on Naxt Instruction 9.6
Program PHOM 96
Put lnstrucnon (Asaembie) g7
. Reset Chlp 9.7
Sdngle Step 9-7
. Searsn for Address in Trace Memory 97
Set/Olear Shared Memory Mode 97
Display COP Status 97
Msasura Elapsad Time 97
Type Brsakpolm or Trace Bala 98
- Set Trace Conditions 98
99

- Disassemble Sharéd Memory

<ADDR>

<ADDR RANGE>
<BLOCK #>

<GHIP #>

<DIG #>

<END>:

<EVT COND>

<FILENAME>
<GOPT>
<INSTRUCT>

<MASK>
<OCCUR #>

Table 9.3. COPMCN Console Command Option Summary

= One to three hex digits, less than or
equal to the maximum address of the
chip defined by <CHIP #>. (See Table
9.1)

= 'P' — Previous.

= "' — Current address, i.e. last address
altered or typed.

= 'N' — Next Address.

= “L" — Last address defined by <CHIP #>

= <ADDR>[<KADDR>

Decimal number, defines consecutive
512-byte blocks.of shared memory or
load module. Valid range determined by
shared memory range for COP device.
{See Table 9.1.)

410 OR 411 OR
420 OR 421 OR.
440 OR 444 OR 445

Hex digit in range X'E down to the
minimum digit address of the chip
defined by <CHIP #>. (See Table 9.1.)

[}

= Decimal humber in range 0-253, last
location of trace memory desired.

= EVOD

= EVO1

= EVI0 FORMAT: EV<EXTZ><EXT1>
=BVl sloglet
= EVXO ‘0'=Logic 0 '
= EVX1 X"=Don’t care

= EVOX

= EVIX

Valid PDS fitename. :
G (GO immediately after printing).

Valid COP400 instruction mnemonic with
operand. i

I

Hex number in range 0-X'FF

e

of times <COND> occurs before
initiating trace of breakpoint.

ALTER SHARED MEMORY Command

Syntax:

Description:

ALTER [<ADDR>][<VALUE> ..]

Alter the contents of consecutive
shared memory locations to the
specified hexadecimal values
beginning at the specified address.
Consecutive commas will increment
the current address pointer, leaving
the data at these locations
unaltered. If no address is
specified, the command begins at
the last altered or listed location.
(See LIST command.) If two or more
values separated by spaces are
given for <value>, the last of these

Decimal number in range 17256,_numbﬂr 5

9-3

<PRINT OPT>

<PRIOR>

<PROM TYPE>
<REG #5

<START>

<COND>

<VALUE>

<VOLUME NAME>

Example:

= A Accumulator (BR)

= ALL All breakpoint data
(BR)

=B RAM addr reg B
(BR)

=6 Carry bit (BR)

=G G 1/O port (BR)

=} | input port (BR)

=) i L /O port (BR)

=M : All RAM on chip

2 i (BR)

= M<REG #> RAM registers

<BEG #> (BR)

RAM digit <REG
#>, <DIG#> (BR)

M <REG #><DIG #>

i Program counter
; (BR)
=Q Q latches (BR)
=5 Serial IfO register
(BR)
=) Trace Memory
; 0-253 (TR)
= <START> Trace Memory
: <START> (TR}
= <START>/<END> Trace memory

. <START> through
: i <END> (TR)
= Decimal number in range 0-253, number
of _addresse_s traced prior to address on
which <COND> occurred.
= E — MM5204 Erasable PROM.
= B — 878296 Bipolar PROM.

Hex digit in range 0 to the maximum
. -register address of the chip defined by
ZCHIP #>. (See Table 9.1}

It

.Dacimal number in range 0-253, first
location in trace memory desired.
<ADDR>

<EVT COND>

I immediate trace or breakpoint).

Hex number in rﬁnge O0-X'FF.

I

Valid volume name.

values will be the one stored. The-
alterable range of shared memory is
determined by the chip number.
(See Table 9.1.) The COP chip is
automatically reset.

C>A 1CF,D0,,D1

Place DO in location 1CF, leave 1D0
unchanged, and place D1 in
location 1D1.

AUTOPRINT Command

Syntax:

Description:

Example:

AUTO [<PRINT OPT>[<PRINT OPT>. .]

Set or clear Autoprint options.

Each autoprint option included
causes its corresponding value to
be printed during the breakpoint,
trace, and single step operations.
Table 9.3 is a list of the print
options with their description and
the operations to which they apply
— (BR) for Breakpoints and Single-
Steps; (TR) for Traces. If no options
are specified, all are cleared. A
“*PR"” at the end of the line will
cause the autoprint output to go to
the printer. The 16-digit contents of
any specified RAM register will be
printed, left to right, most
significant digit to least significant
digit.

C>AU AP

Causes the contents of the
accumulator and the program
counter to be printed after each
breakpoint and single-step
operation.

BREAKPOINT Command

Syntax:

Description:

BREAKPOINT [<COND>[/<COND>[[<COND>
.. Jl [<OCCUR #>[<GOPT>]|

The breakpoint command sets and
prints the conditions which
determine breakpoint operation. A
maximum of ten conditions are
allowed. If one or more conditions
are specified, all previous
conditions are cleared. If no
conditions are specified, previous
conditions are retained. The
breakpoint command puts the
specified condition(s) in a circular
list. Only the condition at the top of
the list is looked for during
breakpoint operation, but the list is
rotated one position each time a
breakpoint operation occurs. If
<OCCUR #> is not specified, it
defaults to the last specified value.
If <GOPT>> is specified, the
breakpoint operation will occur
repeatedly on successive conditions
in the circular list. This will
continue until a break is received
from the console or panel. Data
specified by the AUTOPRINT
command will be printed, thus
providing an automatic map of
relevant data during COP execution.

9-4

Example:

The breakpoint command sets the
breakpoint enable flag, but does not
initiate breakpoint. If the breakpoint
enable flag is set, breakpoint will be
initiated by the next GO command.
For proper breakpoint operation
while running from PROMSs, shared
memory must have the same data
as the PROMs.

C>BR 2/35/IEVX1/26, 4, G

BRKPT ENABLED

A2 A:35 IMMD EVX1 A:20 OCCUR:4 GO:Y
Breakflag is enabled, the next GO
will cause successive breakpoints
on the fourth occurrence of each of
the five conditions, circling through
the list until interrupted.

CLEAR Command

Syntax:

Descripticn:

Example:

CLEAR

The command clears the breakpoint
enable and trace enable flags, but
leaves their conditions unaltered.
(See BREAKPOINT, TRACE and GO
commands.) It has no operands.
c>C

BRKPT AND TRACE DISABLED

CHIP Command

Syntax:

Description:

Example:

CHIP <chip #>

This command allows the user to
change and display the chip
number. The chip number
determines memory and register
size. (See Table 9.1.) If no option is
specified, the current chip number
is displayed.

C>CH 440
CHIP NUMBER 440

COMPARE Command

Syntax:

Description:

COmpare <Filename>

COmpare <Filename>, <Block #>,
<PROM type>

COmpare <Block #>, <PROM type>

Three types of syntax are shown.
The first compares a file to shared
memory. The second compares the
specified block of the specified file
to the specified PROM. The third
compares the specified block of
shared memory to the specified
PROM. These are the only valid
syntax for the COMPARE command.
Each pair of values that does not
compare is displayed with the
address of shared memory where
that data would be located, and
with identifiers indicating which

Example:

device the data is from. Non-
compares are listed until the entire
range has been compared or a
break is received from the console.

C>C0O 3, E
6E1 S:BA P:BA
TTF S:B6 P:B7

COMPARE DONE

DUMP Command

Syntax:

Description:

Example:

DUMP <PROM type>, <Block #>

This command dumps the contents
of the specified PROM into the
specified block in shared memory.
The checksum is displayed when
the dump is completed.

C>DE 3
CKSM = 3AFC

DEPOSIT Command

Syntax:

Description:

Example:

DEPOSIT <VALUE>, <ADDR RANGE>

This command puts the specified
value into each location of the
specified address range.

C>DE F8, 11/1E

F6 is put in locations 11 through 1E.

FIND Command

Syntax:

Description:

Example:

GO Command
Syntax:

Description:

FIND <VALUE> [[<ADDR RANGE> [<MASK>]]

This command searches for the
specified value in the specified
address range of shared memory. If
the mask option is present, each
shared memory word and <value>
will be “ANDed” with the value of
<mask> before it is tested. This
allows the user to find parts of
bytes in shared memory. If <mask>
is not specified, it defaults to X’FF.
Each occurrence of <VALUE> is
printed on the consocle until the
search is done or it is interrupted
from the console.

C>F BE,200/3FF
2CC 8E 2B0 B8E 3FF 8E
FIND DONE

GO [<ADDR>]

The function of this command
depends on the status of the COP
chip and the breakpoint and trace
enable flag. (See BREAKPOINT and
TRACE commands.) The function of
the GO command for each
combination of relevant parameters
is described in Table 9.4. Generally

Example:

whethar ar hat
Mdr

Givel TRACE Enahiad

{ GKPT ar

a breakpoint will be initiated if the
breakpoint enable is set, a trace will
be done if the trace enable flag is
set, and the chip will be started
running in a normal manner if
neither flag is set. Breakpoint and
trace flags remain unchanged after
the GO command. For example, if
the breakpoint flag is enabled, the
first condition in the list is EVOX,
the autoprint options are B, P, and
<GOPT>is not set, the following
sequence will occur:

C>GO

BRKPTD ON EVOX AT A:XXX

B:01 P:XXX

Here XXX stands for the address at
which EVOX occurred. A similar
message would appear if TRACE
were enabled instead of Breakpoint.

i _ -_Table:.'g.m .GO'Operation Summary

) the “GO" c'nrnrnand depands on the mode that the
whether or not BRKPT or TRACE is enabled, and

J DDH> is glven
CGP Chip Function
Status 5 Performed

 Start chip at addr 000.
Start chip at BRK addr.
“COP ALREADY RUNNING'
. Sﬁart'dﬁlp'at addr 000, enter
_ breakpoint mode.
- Start chip at BRK addr,
enter breakpoint mode.
'~ Enter breakpoint mode.

* Start chip at addr 000, enter
- trace mode.

'Breakpurn(ed

Fhmnl ng

Reset

 BRKPT

TRACE

' Breakpointed 'CANT TRAGE WHEN

L BRKPTED'
: .Rum\lng' Enter trace mode.
 Reset Start chip at <ADDR>.
Breakpointed Start chip at <ADDR.
~Running ‘COP ALREADY RUNNING'.
Reset - Start chip at <ADDR>, enter
e - breakpoint made.
Breakpointed Start chip at <ADDR>, enter
bra_akpoim ‘mode.
Running Breakpoint immediate, start
: ~chip at <ADDR>, enter
breakpoint mode.
Reset = 'GANT GO TO ADR AND
B TARCE
Breakpointed 'CANT GO TQ ADR AND
. TRACE'.
Running 'CANT GO TO ADR AND
: - TRACE.

LIST Command

Syntax:

Description:

Example:

LIST [<ADDR Range> [<ADDR Range> . .]|

This command lists the contents of
the specified address ranges
starting from the next lower
multiple of X’10. If <ADDR range> is
just one address, just that location
is listed. If no address range is
specified, 256 locations are listed
starting from the multiple of X'10
below the current address. The
current address is the last address
printed or altered. Subsequent LIST
commands with no operands will
list the next 256 locations. This
command automatically resets the
COP chip.

C>L 4/8
000 3A G2 00 F2 03 28 76 AA DO

LOAD Command

Syntax:

Description:

Example:

LOAD <FILENAME> [,<0>]

This command loads the specified
load module (.LM) file into shared
memory. If the 0 is specified the
memory is not zeroed before
loading.

C>LO DEMO

FINISHED LOADING

MODIFY Command

Syntax:

Description:

Examples:

MODIFY <print opt><value>[<value 1> .. .]

This is the command structure for
the MODIFY registers and COP
RAM routine. This routine should be
helpful in debugging hardware prior
to debugging software on that
hardware. This function allows the
user to directly alter internal
registers, RAM, and I/O ports on the
COPS chip while breakpointed.

Only one (1) register may be
modified in a single command line.

C>BR 1

BRKPT ENABLED

A001 OCCUR 1 GO:N

C>R

CHIP IS RESET

C>GO

BREAKPOINTED ON A:001 AT A:001
C>M M0,0,1,2,3,4,5,6,7,8,9.A,B,C,0,E.F

This command sets memory
register 0 digit 0 to 0, memory
register 0 digit 1 to 1, etc.

C>M1556,7.8 ...

This command sets memory
register 1 digit 5 to 5, etc.

C>ME, 4

This command loads the E register
with 4 (enable Q register to L bus).

96

C>M Q, AA

This command in conjunction with

the previous command loads the Q
register with AA and thus puts AA
on the L bus.

NEXT Command

Syntax:

Description:

Next [<GOPT>]

This command is identical to Single
Step except at a JSR/JSRP
instruction where it will set the
Breakpoint to the address of the
following instruction and stop there
after executing the subroutine in
real time.

PROGRAM Command

Syntax:

Description:

Example:

PUT Command
Syntax:

Description:

_PROGRAM [KFILENAME:>,] <BLOCK #>,
<PROM TYPE>
This command allows the user to
program the PROM specified by
<PROM TYPE> from the specified
block of the specified file. If
<FILENAME> is omitted, the PROM
will be programmed from shared
memeory. To program a Bipolar
875296 PROM a special pin
scrambler must be inserted (see
Section 2.1 and Figure 2.3). The
command prompts the user to
insert the correct PROM. To begin
programming the user inserts the
correct PROM (and disc if
programming from a file), then
presses a carriage return in
response to the insert prompt. PDS
messages to the console indicate
the state of the programming
procedure.

C>P DEMO, 1, E
INSERT EPROM, PROGRAM (YIN,CR:YES]’?@

PROGRAMMING VERIFYING
CKSM = XXXX

PUT [<ADDR>][<INSTRUCT>[<INSTRUCT>...]]

Replace the contents of shared
memory starting at the address
specified with the opcodes of the
specified instructions. If no address
is given, placement begins at the
current address. This command
automatically resets the COP chip.
Instruction opcodes may be directly
specified in the operand field.
Instructions with double operands
may only be specified in hex format
and, unlike the Assembler format,
double operands may not be
separated by commas (e.g., LBI 23
is OK; LBI 2,3 is not allowed).

Example: C>PU 130, CLRA, AISC 15 LBI 39

c>

RESET Command

Syntax: RESET

Description: This command resets the COP chip
and sets the reset flag, which
determines operation of the GO

command. (See Table 9.4.)

Example: C>R

CHIP IS RESET

SINGLE STEP Command

Syntax: _SINGLESTEP [<GOPT>]

Description: This command performs a
breakpoint on the next instruction,
If the COP is reset, it breakpoints at
address 1. If it is running, it is
breakpointed on the next
instruction. If it has already
breakpointed, it steps one
instruction. After each single-step,
information specified in the
AUTOPRINT command is printed, If
<GOPT> is included, it will
automatically step and print data
until interrupted by the console.

Example: C>S G
Step
A:OP:10
Step
A1P:11

CARRIAGE RETURN SINGLE STEP

=

If the COP is breakpointed a
carriage return is identical to
singlestep without <GOPT>.
o€

STEP

P:81B:6

Syntax:

Description:

Example:

SEARCH Command

Syntax: SEARCH <ADDR>

Description: This command searches Trace
Memory for the specified address.
Each occurrence is displayed and it
searches until finished or

interrupted by the console.

Example: C>SE 2FE
00 A:2FE SKIP E: 1111
88 A:2FE E: 1101

SEARCH DONE

Each line of output from the SEARCH command
and the TYPE (trace memory) command contains

97

the following information, from left to right:

1. Trace Memory Location

. Location relative to TRACE condition location
. Program Counter

. Skip indication

. Value of external event inputs E4-E1, left to
right

oW N

In the above example, the Trace Memory locations
are the same as their location relative to the Trace
Condition location, since no prior number was
specified. Therefore, the Trace Condition location is
the first Trace Memory location.

SHARED MEMORY Command

Syntax: SHARED MEMORY [Y/N]

Description: This command allows the user to
specify whether the COP chip runs
from shared memory or PROM. If
“¥* is typed, the COP will run from
shared memory. If “N" is typed, the
COP will run from PROM. The COP
chip is automatically reset.

Example: C>SHY
SHARED MEMORY MODE
C>SHN
PROM MODE
c>

STATUS Command

Syntax: STATUS
Description: Prints status of COP chip and
various other internal conditions.
Example: C>ST
CHIP NUMBER 420
CHIP IS RESET

BRKPT AND TRACE DATA NOT VALID
SHARED MEMORY MODE

BRKPT CONDITIONS:

A:005 OCCUR: 1 GO:N

TRACE CONDITIONS:

EVX1 OCCUR: 1 PRIOR:0 GO:N

TIME Command

This command is similar to the TRACE command.
It allows the measurement of elapsed time between
addresses andl/or external events.

Syntax: TIME
[<cond1>(<occur1>][i<condZ>{,<occur2>]])
Description: The TIME command sets and prints

the conditions which control the
time measurement. The timer is
started when the first set of
conditions is met and the timer is
stopped when the second set of
conditions is met. The second set
of conditions is invoked only after
the first set of conditions is
satisfied, and it is only looked for

Examples:

from that time. If those conditions
have been encountered prior to the
first set of conditions having been
met they are ignored.

As in the TRACE command the
TIME command is not initiated until
a GO command is issued. The
TIME, TRACE, and BREAKPOINT
commands are mutually exclusive.

The limits on the TIME command
are: The time between the events
must be more than 500
microseconds and less than 7
minutes. If the time is less than 500
microseconds the conditions may
not be recognized or if they are
recognized the time reported will be
in error. If the time is longer than 7
minutes a timer overflow message
will be reported. The resolution of
the TIME command is +100
microseconds.

If only COND1 is specified, COND2
is set to COND1 and the
occurrences are both set to the last
value of OCCURA1. If only COND1
and OCCURT1 are specified, COND2
is set the same as COND1 and
OCCUR2 is set the same as
OCCURA1. If COND1 and COND2 are
specified, OCCUR1 and OCCUR2
are left at their previous values.

C>TI EVX1, 2/234, 3

TIME ENABLED:
EVX1 OCCUR: 2 TO A:234 OCCUR: 3
This command will measure the
time from the second positive
transition on EXTERNAL EVENT 1
(high on 1, don’t care on 2) to the
third occurrence of address 234
after the EXTERNAL EVENT
condition has been met.

C>TI 350, 1/24, 2

A: 350 OCCUR: 1TO A:024 OCCUR: 2

This command will measure the
elapsed time from the first
occurrence of address 350 to the
second occurrence of address 24
after the occurrence of address 350.

C>Tl 44

A:044 OCCUR: 1 TO A:044 OCCUR: 1
C>G0

TIME ON A:044 TO A:044 16.8 MS

This example shows the default
conditions of the command. Used
with the previous example this
command will measure the elapsed

9-8

Notes:

time between the first occurrence of
address 44 and the next occurrence
of address 44.

None of the time command
examples are invoked unless they
are followed by a GO command.

Time is reported in milliseconds.

TYPE Command

Syntax:

Description:

Example:

_TYPE [<PRINT OPT> [<PRINT OPT> . .]]

This command types out the
information specified to the printer
or console. As with the AUTOPRINT
command, if a RAM register is
specified, its 16-digit contents will
be listed, left to right, most
significant digit to least significant
digit. If no options are specified,
trace memory will be displayed in
blocks of 16.

C>T P, Q, B, M14, M2
B:10 Q:FF P:004 M14:0
M2:00000000120F120E

TRACE Command

Syntax:

Description:

TRACE [<COND>[,<OCCUR#>[,<PRIOR>
[.<GOPT>]lIl

This command allows the user to
set the print trace conditions.
During a Trace operation COPMON
stores each consecutive value of
the COP program counter in a
254-byte circular buffer, so that at
any time during trace operation, the
buffer has the previous 254 values
of program counter. When <COND>
has been met the number of times
specified by <OCCUR#>, COPMON
saves the number of values of the
program counter prior to <COND>
specified by <PRIOR>, and fills the
rest of the buffer with the
subsequent values of the program
counter. It then prints the <COND>
specified and the address where
<COND:> was recognized, followed
by any Trace data specified by the
AUTOPRINT command. If <COND>,
<OCCUR#> or <PRIOR> are
omitted, they retain their previous
values. If <GOPT> is included, then
each time a trace operation is
finished, another GO command is
performed with the same
conditions, continuing until
interrupted by the panel or console.
The TRACE command does not
initiate trace operation, but sets the
trace enable flag so that trace

.

operation is initiated on the next
GO command. {See Table 9.4.)

Example: C>TR EVOX, 2, 22

TRAGE ENABLED:
EVOX OCCUR: 2 PRIOR: 22 G: N

UNASSEMBLE Command

Syntax: NASSEMBLE <Y/N>

The UNASSEMBLE mode will give
an opcode and mnemonic for each
instruction, The UNASSEMBLE
command is of the same type as
the AUTOPRINT command and
when invoked will work with the
LIST, TRACE, BREAKPOINT, and
SINGLE STEP commands.

When the UNASSEMBLE mode is
selected the chip will be reset on
TYPE, contrary to the way trace
data is handled when running
normally.

IF A LIST IS STARTED ON THE
SECOND BYTE OF A TWO-BYTE
INSTRUCTION THE UNASSEMBLY
WILL BE INCORRECT UNTIL TWO
SUCCESSIVE ONE-BYTE
INSTRUCTIONS ARE
ENCOUNTERED.

The STATUS command will give the
status of the UNASSEMBLE
command aleng with the rest of the
status of the chip.

Description:

Example: C>UNY

DO UNASSEMBLY

9.4 Front Panel Conventions

Display: The blinking rightmost decimal point light
indicates prompt mode. While in prompt mode, new
commands may be entered from the panel or
console. A steady decimal point light over the word
“run” indicates that the COP is running.

Command Format: The panel command format is
similar to the console command format in that the
command is entered first, followed by the operand.
Also, the nature of each command and its
operands generally parallels its counterpart on the
console. To minimize keystrokes, commas are not
always used to separate options but are used when
necesasary to delimit numbers. Each specific
command automatically determines the number of
digits displayed and used when entering numeric
operands. Digits entered are shifted into the
rightmost digit and the previous number displayed
is shifted left. If invalid numbers for a specific

99

operand are shifted through the display, the words
“err” or “er” may be displayed either in place of
the invalid number or elsewhere on the display. The
user may continue to press new digits, and, when
the resulting number is valid, the error message
will disappear from the display. Digits may be
shifted indefinitely, until a legal or illegal delimiter
is pressed. At this point the number displayed is
used by the command.

Upper case keys are selected with the shift key.
Unlike the console, the shift key is not held down
while the other key is pressed. Instead, the shift
key is pushed first, and the following key has the
upper case value.

Similarly, for special function keys, “SFUNC" is
pressed first, and the following key has the special
function value. Whenever the “SFUNC” key is
pressed, “SFNC" will be displayed in the left or
right half of the display.

Command lllustration: The following is a sample of
the format which will be used to illustrate each
command:

BREAKPOINT Command

Syntax: BKPT [<cond>[(+/— Kcond> . . JlL[<occur>]|
Description: Here the function and details of the
command are described.
Example: KEY SEQUENCE DISPLAY
SHIFT
BKPT BP 0. 001
5 BP 0. 005
4 BP 0. 054
INCR BP 1. NONE
SFUNC BP 1. SFNC
E BP1 E
2 BP 1. E 02
1 BP1.E 21
; 0OCCU. RoO1
5 OCCU. RO0S
TERM #

The syntax line contains the command key label
followed by the options. In the syntax line, upper
case labels represent the sequence “shift” and
then that key; special function key sequences are
labeled “"SFNCX” where “X" is the label of the
second key. Options may include key labels and
the general options defined in Table 9.6. In option
punctuation, a comma represents the comma key;
“+" and " ~" denote the “INCR” and “DECR” keys
respectively, and a period (*.”) represents the
“TERM" key.

Each line under “Example:” represents the key
pressed and the resulting display. Each key
pressed is shown, including “SHIFT" and
“SFUNC."” The asterisk in the far right place
represents the flashing prompt light. The period in
the middle (right side of left half) represents the run
light, which stays on while the chip is running.

Command Name

BAEAKPOINT

CHIP
CLEAR
COMPARE

CONSOLE
GO
LOAD

MODE
RESET
SEARCH

SHARED MEMORY
SINGLE STEP
TRACE
TRACE MEMORY
ABORT

9.5 Front Panel Operation

COPMON may be loaded by inserting the disk and
pressing the switch labeled “MONITOR.” When it
finishes loading COPMON the chip number prompt

Table 9.5. COPMON Panel Command Table

Syntax

BKPT [<cond>[+ ~ J<cond> . . .J] [[Koccur=]]

C [<chip #>
CLR
SENG1 SMEM <b|ock. #><PROM type> [+]
SFENC1 SENC <file #>, <block #> <PROM type> [+]
SFNC1 SFNGCD <fils #> SMEM [+]
SENGE
GO [<addr>]
SFNCD <PROM type> SMEM <block #>
SFNCO SMEM <block #> <PROM type>
SENCO SENCD <file #>, <block #> <PROM type>
SENGO SENGD <file #> SMEM
SENC4 [<mode>]
SFNCCLR
SFNC2 SMEM <value> [+]
SFNG2 TRAGE <addr> [+]
SMEM [<addr>]<values[<value> .]
S8
TRACE Kcond>l[<occurs{[<prior>]l]
éFNCS [<trace #>
ABORT [2]

SPECIAL FUNCTION

‘SFCN 0
SFCN 1
SFON . 2
SFCN 3
SFCN. 4
SFCN A

- SFCN G
SFCN CLR

is displayed on the panel. The chip number is used
by COPMON to select the correct memory size and
register size (see Table 9.1). The user may either

change the chip number by entering a new number

or use the one displayed. If the number in the
display is a valid chip number when “TERM" is
pushed, it becomes the new chip number.
Otherwise, the chip number prompt is displayed
again with the old number. The first time COPMON
is loaded after power-on, the chip number will be

9-10

Description

Read, and set breakpoint conditions and
flags. i

The following commands display COP data
when the GOP is breakpointed:

Displays Syntax
Accumulataor ACC
B register BREG
Carry & skip flags CARRY
G /G ports GIN
linput ports 1IN
L input ports ; LIN
Program counter - PC
Q register QREG
RAM register REG <reg #>
S register SREG

Display/altering number.

Clear breakpoim_-and trace enable flags.
Compare shared memory to PROM.
Compare file to PHOM.

Compare file to shared memaory.
Consqle baud ra.le setup. :
Begin execution of breakpoint or trace.
Load shared memor{,r from PROM.
Program PROM from shared memory.
F‘rcgr:em PROM from _.ﬂLe.

 Load shared memory form file.

Setidisplay mode.

Reset chip.

Search for value in shared merﬁory,
Search for address in frace memory.
Display/aiter shared memory.

Single step

Set, and display trace conditions and flag.

Display trace data.

Abort.
DEFINITION DISPLAY
LOAD LOAD
COMPARE CH
SEARCH SEARCH
RD TRC MEM T. 000 S. 001
SET MODE RUN SHAR (RUN PRO)
ABORT ABORTED
CONSOLE CONS OLE?
RESET RESE T?

KEY SEQUENCE DISPLAY
CHIP ? 420
4 CHIP ? 204
4 CHIP ? 044
0 CHIP ? 440
TERM S

Page

910

9-11

911
9-11
911

912
912
9-12

913
913
913

913
914
914
914
914

420. After each subsequent loading of COPMON

the chip number will be the valid chip number

specified by the user.
Example:

After the user has responded to the chip number
prompt, and after each subsequent command,
COPMON returns to prompt mode. This is indicated
by the flashing rightmost decimal point. While in
prompt mode the user may enter commands from
the panel or console.

 Table 9.6. COPMON Panel Operand Definitions

Operand

<addr>

<block #>

<chip #>
<cond >

~ <ev. cond>

<file'#> -

<mode>

<ocour>
<prior>

<PROM typs>

<reg #>

<lrace #>

<value>

I

[S

i

i

It

JI"

Definition

Shared memory address, range defined
by chip number. (See Table 9.1

Decimal number, defines consecutive
512-byte blocks of shared memory or
load module. Valid range determined by
shared memory range of COP dewca
(See Table 8.1

Chip number “410” or “411" or
420" or 421" or
“440" or “444” or 445! :

<addr> — address

<ev.cond.> — external event
88 meedtate

SENCE 00

SENCE 01

SFNCE 02

SENCE 10

SENCE 20

SENCE 11

SFNCE 12

SENCE 21

Format is SFNCE <EXT2> -./E){‘r1>
’ Logico 1

2 _kDontgana o

Decimal file: numberfram 1-99as
displayed by "D command in F\Ee
manager. (Sse Chapter 5)

SMEM - Shared: rnernoly ;
SENCE EPROM ('MM5204) g
SFNGB: BPHDM (578296}

Dec:mal number 1256, number ot t:mes
<cond> aceours. before mmatlng

" 'breakpelm or trace.

Decimal number, 0-253, number address-

_ traced prior to address cn wmch <cund> 4

was found!

SFNCE — MM5204 Erasable PROM

= SFNCB — 875208 Bipolar PROM

L5

H

Hax digit in range 0to ike maximum
register of the chip defined by <c:h|p o
{See Table 9.1)

Decimal number, 0 253, location in tface ¢
memory to be dlsp\ayed

Hex number; 0= X'FF.

COPMON Panel Commands

The COPMON panel commands are summarized in
Table 9.5 and are described in detail below. Panel
Operand definitions are listed in Table 9.6. Table
9.7 is a list of Panel Error Messages.

9-11

Table 9.7. COPMON Panel Error Messages

Panel
Message

ABORTED
SEQ ERR
OF ERR

NOT ERAS .

FILE ERR.
GHSU ERR
BAD PRO

'BNG ERR

BP ABORT
TR ABORT
| TRACE ER

CANTADDR:

FUNNmG
~ TRACE EN

Meaning

COMMAND ABORTED
ILLEGAL COMMAND
ILLEGAL OPERAND

NOT ERASED
FORMAT ERROR IN FILE
GHECKSUM ERHOR
BAD PROM
ERROR — LOAD ADDRESS TOO LARGE
'BREAKPOINT ABORTED
TRAGE ABORTED
- CANT TRAGE WHEN BRKPTED
 ADDR ILLEGAL WHEN TRAGING
~ COP ALREADY RUNNING
CANNOT S8 WHEN TRAGE ENABLED

BREAKPOINT Command

Syntax:

Description:

BKPT [<cond>[(+/-)cond> . . JlLIKeccur=]

The BREAKPOINT command sets
and displays the conditions which
determine breakpoint operation. A
maximum of 10 conditions is
allowed. After a breakpoint
command, conditions up through
the largest number of conditions
altered or examined are retained,
others are cleared. The
BREAKPOINT command puts the
specified conditions in a circular
list. Only the condition at the top of
the list is looked for during
breakpoint operation, but the list is
rotated once each time a breakpoint
is finished. The program counter
and breakpoint condition appear
from left to right on the display
each time a breakpoint is finished.
If <occur> or any conditions are not
altered, then they are used again for
the next breakpoint operation. The
BREAKPOINT command sets the
breakpoint enable flag when
“TERM" is pushed. Breakpoint
operation is initiated by the “GO"
command when the breakpoint flag
is set. (See GO Command and Table
9.4.) For proper breakpoint
operation while running from
PROMs, shared memory must have
the same data as the PROMs.

Example:

KEY SEQUENCE DISPLAY
SHIFT

BKPT BP 0 001
SFUNGC BP 0 SFNC
E BPOE

2 BPOEO2

1 BPOE 21
INCR BP 1 NONE
6 BP 10086

' OCCU ROO1
5 OCCU R005
TERM *

Above, the user has set two
conditions, E21 and address 006,
and has changed the occurrence to
5

DISPLAY BREAKPOINT DATA Commands

Syntax:

Description:

Example:

ACC

BREG
CARRY

GIN

HN

LIN

PC

QREG

REG <reg. #>
SREG

Each command displays the data
corresponding to its label and
returns to prompt mode with the
exception of the REG command.
The REG command has one
operand. The REG command looks
for this operand or an executable
command. The CARRY command
displays the carry and skip from left
to right. These commands are only
valid if the COP is breakpointed. If
not, the message “NOT BPTD” is
displayed.

KEY SEQUENCE DISPLAY
SHIFT

ACC AREG E
SHIFT AREG E
PC PC 20A
SHIFT PC 20A
REG RO06

2 R0O2B

5 R25¢9
TERM *

CHIP Command

Syntax:

Description:

Example:

C<chip #>

The chip command allows the user
to display and change the chip
number exactly as the chip number
prompt does. The chip number
determines memory and register
size (see Table 9.1). This command
resets the COP.

KEY SEQUENCE DISPLAY

c CHIP ? 420
4 CHIP 7 204
i CHIP ? 041
0 CHIP ? 410

TERM X

CLEAR Command

Syntax:

Description:

Example:

CLR.

This command clears the
breakpoint and trace enable flags.

KEY SEQUENCE DISPLAY
CLR CLEA R?
TERM BPTN CLR*

COMPARE Command

Syntax:

Description:

Example:

SFNC 1 SMEM <block #> <PROM type>. [+].

SFNC1 SFNCD <file #><block #>
<PROM type>. [+].
SFNC1 SFNGD <file #> SMEM. [+].

Three examples of syntax are
shown. The first compares the
specified block of shared memory
to the specified PROM. The second
compares the specified block of the
specified file to the specified
PROM. The third compares the
specified file to shared memory.
These are the only valid syntax for
the COMPARE command. The first
value that does not compare is
displayed with the address of
shared memory where the data
would be located. The address is
displayed on the left side and the
disagreeing values are separated by
a period on the right side. The
values from left to right are from
the source device and the
destination device. The source and
destination devices are the first and
second in the command string,
respectively. When the first non-
compare is found, the user can
display subsequent non-compares
by pressing “INCR” until the last
one.

KEY SEQUENCE DISPLAY
SFUNG SFNC

1 CH

SFUNG SRC SFNC
D SRC DISC.
3 SRC D.03

; SRC D.0.3.0
2 SRC D.0.3.2
SFUNC SRC SFNC
E DEST EPRO
TERM 7.4A6 66.46
INCR 7.4F1 3A3B
INCR CH DONE*

In the above example, block 2 of file
3 had two non-compares with the
EPROM. At address 4A8, the disk
had 66 while the PROM had 46. At
4F1, the disk had 3A and the PROM
had 3B.

S

CONSOLE Command

Syntax:

Description:

Example:

GO Command
Syntax:

Description:

Example:

SFNCC

This command allows the user to
select a new baud rate. After the
command is entered, a carriage
return will allow automatic
selection of baud rate.

KEY SEQUENCE DISPLAY
SFUNC SFNG
c CONS OLE?
TERM CR?
(carriage return)
GO [<addr.>]

The function of the command
depends on the status of the COP
chip and the breakpoint and trace
enable flags. (See BREAKPOINT
and TRACE Commands.) Each
possible function of the GO
command is described in Table 9.4.
Generally, a breakpoint will be
initiated if the breakpoint enable
flag is set, a trace will be done if
the trace enable flag is set, and the
chip will be started. Breakpoint and
trace flags remain unchanged after
the GO command. Suppose the
breakpoint flag were enabled and
the first condition on the list were
E 21. The following sequence would
occur.

KEY SEQUENCE DISPLAY

SHIFT ;

GO Gge,

TERM [
B.56F E 21

In the above example, the chip was
running until it found the breakpoint
condition, at which point the run
light went off and the message
appeared. The message contains
the program counter and breakpoint
condition from left to right. At this
time other breakpoint data is
available also. {See DISPLAY
BREAKPOINT DATA Commands.) Of
course, this example assumes a
program in shared memory which
eventually finds EXT1 high at
address X'56F. The run light in
parentheses represents the
temporary blank panel between
“TERM” and finding the condition.
This may or may not be too short

9-13

Example:

for the user to see. If trace were
enabled instead of breakpoint, with
a trace condition of E 21, the
following sequence would occur:

KEY SEQUENCE DISPLAY
SHIFT .

GO GO

TERM T-56F=E21>

In the above example, COPMON has
stored the 254 consecutive program
counter values including skip
information. Assuming the same
program as in the previous example,
EXT1 again went high at address
X'66F. The message contains the
program counter value when the
event was found and the event
(EVENT 2 DON'T CARE/EVENT
1="1"). When the COP is traced, as
in this example, the user may
examine trace memory with the
SEARCH and TRACE MEMORY
commands.

LOAD Command

Syntax:

Description:

SFNGO0 <PROM type> SMEM <block #>
SFNCO SMEM <block #> <PROM type>. [

SFNCO0 SFNGD <file #>, <block #>
<PROM type>. []

SFNCO0 SFNCD <file #> SMEM

The LOAD command loads data
from the first device in the
command sequence (source) to the
second device in the command
sequence (destination). The first
syntax line dumps the contents of
the specified PROM into the
specified block of shared memory.
The second syntax line programs
the specified PROM from the
specified block of the specified file.
The last syntax line loads shared
memory from the specified file.
These are the only valid syntax for
this command. When programming
a PROM, a PROM-type verification
prompt is displayed. Bipolar PROMs
{875296) require a special pin
scrambler (see Section 2.3 and
Figure 2.3). If “TERM" is pressed
after the PROM-type prompt, the
PROM is programmed. Because
programming voltages are different
for the two types of PROMs, it is
important that the correct device be
inserted before programming.
Programming a PROM takes a
couple of minutes, and during this
time a message is displayed
indicating the PROM is being

Example:

programmed. After the two
programming commands, the
checksum is displayed. After the
other two commands, a message is
displayed indicating that the load is
finished.

KEY SEQUENCE DISPLAY
SFUNC SFNC
0 LOCAD
SFUNC SRC SFNC
D SRC DISC
1 SRC D.01
2 SRC D.12
3 SRC D.12.0
2 SRC D.12.2
SFUNC SRC SFNC
B DEST BPRO
TERM BPRO ?
TERM
PROG - ING
CHSU XXXX*

MODE Command

Syntax:

Description:

Example:

SFNC4 [<mode>]

This command allows the user to
examine or alter the running mode
of the COP. The COP may run from
shared memory or from a PROM.
This command resets the COP chip.

KEY SEQUENCE DISPLAY
SFUNG SFNC

4 RUN SHAR
SFUNC RUN SFNC
E RUN PRO
TERM b

RESET Command

Syntax:
Description:

Example:

SFNCCLR.

This command resets the COP chip.

KEY SEQUENCE DISPLAY
SFUNC SFNC
CLR RESE T?
TERM HESET -~

SEARCH Command

Syntax:

Description:

SFNC2 SMEM <value> [+].
SFNC2 Trace <addr> [+]

The first line of syntax searches
shared memory for the value
specified. This command resets the
COP chip. The second line searches
trace memory for the specified
address. After the initial value or
address is found, subsequent
occurrences can be examined by
pressing “INCR.” In the example
below, only two cccurrences of 33
were found in shared memory.

Example:

Example:

KEY SEQUENGCE DISPLAY
SFUNC SFNC

S SEAR. CH
SHIFT SEAR. CH
SMEM s

= S.16A 03
3 §.120 33
INCR 5.134 33
INCR S. NO 33
TERM 5

In the above example, X'33 was
found at address X'120 and X'134.
The first occurrence of X’03 was
inadvertently found along the way.
In the next example, address 120 is
found twice, in trace memory
locations 17 and 27 (decimal).

KEY SEQUENGE DISPLAY
SFUNC SFNG

2 SEAR. CH
SHIFT SEAR. CH
TRACE T4

il T. NO S5.001
2 T. NO §.012
0 T.017 5.120
INCR T.027 §.120
INCR T.027 5.120
TERM T. NO.S.120

SHARED MEMORY Command

Syntax:

Description:

Example:

9-14

SMEM [<addr>] [<value>[.<value> ..]|

This command allows the user to
examine and alter the contents of
shared memory. This command
resets the chip. The first comma
separates the address specification
and value specification. Each
subsequent comma increments the
address. The value stored is the last
value displayed for each address. In
the example below X'C7 is stored in
address X’011 and X'013,X'012 is
left unaltered.

KEY SEQUENCE DISPLAY
SHIFT ,
SMEM $.000 00
1 $.001 33
i §.011 23
¥ §.011 23
G 8011 3C
7 §.011 C7
§.012 03
‘ §013 23
C 8.013 3C
7 S.013 C7
TERM &

SINGLE STEP Command

Syntax:

Description:

Example:

TRACE Command

Syntax:

Description:

S8

This command allows the user to
single step through a program. After
each step some piece of breakpoint
data is displayed. This data will be
whichever register was examined
during the previous breakpoint or
single step. If none is specified it
defaults to display the program
counter. If the program counter
advances by more than one in a
step, it may mean that the
undisplayed step(s) were skipped.
Any other command may be
executed immediately after single
step.

Example:

KEY SEQUENCE DISPLAY

ss PC 3C7*
ss PC 3C8"
SHIFT PC 3C8*
ACC AREG 4*
S8 AREG 8"
88 AREG C*

(Next command.) Syntax:

TRACE [<cond>][[<occur>[[<prior>]]]]

This command allows the user to
examine and alter the conditions
which affect trace operation. If any
of the options are not specified,
they remain unaltered from the
previous specification. The default
values on entry to COPMON are
X'001, 1, O respectively for <cond>,
<occur> and <prior>. During trace
operation COPMON stores each
consecutive value of the COP
program counter in a 254-word

Example:

circular buffer, so that at any time Dascriphion:
during trace operation the buffer

has the 254 previous values of the

program counter. When <cond> has

been met the number of times Example:

specified by <occur>, COPMON
saves the number of values of
program counter prior to <cond>
specified by <prior>, and fills the
rest of the buffer with the

Description:

subsequent values of the program
counter. It then displays a message
which contains from left to right the
address where <cond> is
recognized and the <cond>
specified in the TRACE command.
The TRACE command does not
initiate trace operation but sets the
trace enable flag. If that flag is set,
trace operation is initiated on the
next GO command. (See GO
Command and Table 9.4.)

KEY SEQUENCE DISPLAY
SHIFT :

TRACE TR . 001

4 TR . 004

5 TR . 045

) 0OCCU . Ro01
4 OCCU . R0O04
- PR10 . ROOO
] PR10 . R0O06
4 PR10 . RO64
TERM B

TRACE MEMORY Command

SFNC 3 [<trace #>]

This command displays trace
memory. The first location
displayed is the last location
displayed by the previous TRAGCE
MEMORY command or the location
where <cond> was recognized.

KEY SEQUENCE DISPLAY
SFUNC SFNC.

3 T.084. 5.045
2 T.642. ERR
1 T.421. ERR
0 T.210. 5.16C
TERM T

ABORT Command

Any command may be aborted
before pressing “TERM™ by
pressing SFNCA. The prompt mode
is returned.

KEY SEQUENCE DISPLAY
SHIFT

GO GO

1 GO 001
SFUNC GO SFNC

A ABORTED *

File List Program

(LIST)

The File List program (LIST) is a PDS system
program that provides the user with a means of
listing any type of file on the system console or
printer. LIST has several print options available that
allow setting of page headings, control of page and
line numbers, etc. Files that are not symbolic are
listed in hexadecimal and ASCII,

10.1 Using LIST

To call LIST, the user types in the @ command:
X>@LIST filename [options]
LIST,REV:A
(Listing now begins.)
or
X>@LIST
LIST,REV:A
L>-filename [options]
(Listing now begins.)

where “filename’ is the name of the file to be
listed, and "options” are print options described
below. Table 10.1 summarizes all LIST options.
Each may be abbreviated to the first two
characters. The default modifier for the filename is
“SRC.”

Upon completion of all copies of the Ifsting, LIST
prompts the user for another filename and options.

Options

Options are scanned left to right and are separated
from the @LIST command and other options by
spaces. The order is significant to the extent that
later options may change those previcusly
specified. Otherwise, the only other requirement is
that the HD option must be last (since it is
followed by text rather than more options). All
option names can be abbreviated to the first two
characters. In the option parameters, “n" is a
decimal number and “char” is a single ASCI|
character,

10-1

Option
ANSI
Con

_ DBL.

_FO char

HD text

HER

. INn

Unm
P
NE

NE 5

_ Table 10.1. Summary of LIST Options

Meanlng

F;la cgmalns ANSI carrkage-control character in
column 1.

Select number of copies to print.
Double space.

- 'Set form feed character.

Sei haadmg iaxf
Prlnl f1]e in unformatted hex/ASCII.

: Inclent left margm n spaces.
.:Seleet line mnge to pnnt

; _Sst number of ilnes per page.
_.Supprass page eject after 58 lines. -

Suppress formatlmg (same as ccmbmanon of NE, NH,
NP and UN).

_Suppress headmg at top of page.

et number ot nuus tollowing a carriage return.

i ;_Supprass page eject when Encoumarlng assembler

TRn

UN
WAIT

Win

: directive .FORM.
i Pnrgl_lme_r_lumb_ers an listiqg,.

Select pa‘ge"mng‘a to print.

"E}ect page when encounterlng assembler directive
o FGRM

. Sele' punlel sutput

; Oompress blanks in the output’ (qu‘lck mode).

Print the tab character.

Set right margin at n characters and truncate

characters exceeding the margin.

: _ Send form feed on new pages.

: Suppr_es_s Ii_ﬁe numbers on listing.

Wait for any input character before resuming listing
on new pages. i

Set right rﬁ'argin at n characters and start new line for
cha‘r'ag:ters exceeding the margin.

Device Selection Options specify the output device,

line width, and spacing between pages.
Option Description

(default) Six line feeds between page on output listing.

NL n Set number of nulls to be output after a carriage
return; used for generating paper tapes to be read on
other systems.

Por PR Select Printer output and generate form feed between
pages.

Y TTY new page: send form feeds instead of line feeds.

WAIT TTY new page: wait for input character to resume.

Text Formatting Options control the actual text
that is printed.

Option Description

ANSI Treat the first character of the text line as an ANSI
carriage-control character. The control character is not
printed but controls the line spacing instead. The
control characters are:

+ =No spacing (overprint)

— =Triple space

0=Double space

1= New page

Anything else = Single space

DBL Double space. If used together with the ANSI option,

the specified spacing is doubled

FO char Set form feed character. If this character occurs in
calumn 1 of the text line, a new page occurs (instead

of printing the character).

HEX Print file in unformatted hexadecimal/ASCIl. Other
formatting options will not apply. This option is
always taken for files other than Symbolic or Data

files.

N or NU Print line numbers on listing (default for files with

modifier of “.SRC").

Qu Quick Mode: compress blanks in the printout. Any
sequence of consecutive blanks in a line image is
printed as a single blank. This option will negate any

indent that may be set.

TAB Print the tab character (09). Otherwise the tab is
printed as the number of spaces required to move to
the next fixed tab stop (every 8 columns in the text

field).

UN Do not print line numbers (default for all files except

for those with a modifier of ".SRC").

Line Size Options control indentation and margin.

Option Description

IN n Indent left margin n spaces (default =0).

TRn Set right margin at n characters; any additional
characters are truncated and not printed.

Wi n Set right margin at n characters; any additional

characters are folded over onto a new line
(default =72).

Note: The PR Option sets the width to 80, but does not change
the folditruncate mode.

10-2

Print Selection Options determine what part of the
data is to be printed.

Option Description

COn Select number of copies to print.

LI n/n Select line range to print. May be specified as n or nin;
the first number is the first line to be printed and the
second number is the last line to be printed.

PA nin Select page range to print; action is the same as LI

option except that the range is by page number.

Both LI and PA may be specified; the action is as
follows: if either range starts at 1, the starting
number of the other option determines the first line
to be listed. The first end specification encountered
stops the listing. If a single line or page number is
specified, printing begins with that line or page and
continues to the end of the file.

Page/Heading Options control the number of lines
on a page, page heading, and page printing.

Option Description

(default) Lines are counted so that a new page occurs after
every 58 text lines, thus providing proper formatting on
812-by-11 pages. If the file modifier is .LST, the NF
option is assumed. If the file modifier is SRC, the PG

option is assumed; otherwise NP is assumed

HD text Set heading text. The detault is the name of the file,
e.g., LIST.SRC. This must be the last option on the
calling line since all characters following the HD up to

the carriage return are used for the heading text.

LP nin Set number of lines per page. The first number is the
number of text lines on a page; the second number is
the number of lines on a sheet of paper. The default is
58/66, which is correct for normal 8Vz-by-11 pages. It is
not necessary to specify both numbers if only the
number of text lines is to be changed. The text will be
automatically centered vertically on the page.

NE Suppress page eject on counted line; page ejects
occur only where explicitly determined by the text
(either form feeds or assembler directive .FORM, if

being checked).

NF No formatting (same as NE, NH, NP, and UN). This

option is the default for files with a modifier of “.LST.”
NH
NP

Suppress heading at top of page.

Suppress page eject when encountering assembler
directive .FORM.

PG Check for assembler directive .FORM. This option is

the defauit for files with a modifier of *.SRC."

Example: List on printer ADD.SRC file, no
formatting except for line number
printout:

X>@LIST ADD.SRC PR NE NH NP

Cross Reference Program

(XREF)

The Cross Reference program (XREF) is a PDS
system program that provides the user with a
means for printing a “symbol map” of COP
assembly language programs. The symbol map
shows the name of every symbol in the program,
the line number where the symbol is defined, and
all of the line numbers where the symbol is used.

11.1 Using XREF

To call XREF, the user types in the @ command:
X>@REF filename
XREF,REV:A
(Cross referencing now begins.)

or

X>@XREF
XREF,REV:A
R>filename

(Cross referencing now begins.)

where “filename” is the name of the COP assembly
language (SYMBOLIC) file to be cross referenced. If
the filename is followed by “*PR,” the listing will
be printed on the printer.

Figure 11.1 shows a typical cross reference listing.
Local symbols (i.e., those starting with a $ sign) are
listed first. Symbols are listed in alphabetical order.
The numbers listed beside each symbol are the
numbers of the lines in which the symbol appears.
A “-" beside a line number indicates that the
symbol is assigned or otherwise given a value in
that line. A “*” beside a symbol means that the
symbol appears in only one line.

Mask Transmittal Program

(MASKTR)

12.1 Use of Mask Transmittal Program

MASKTR is a PDS system program which is used
to generate a “Transmittal File” that NSC uses for
creating the COP chip ROM/OPTIONS mask and
the functional test program.

The transmittal filename will be the same as the
LOAD MODULE filename, the modifier will be .TRN,
and the internal file type is SYT.

The transmittal file contains:

1. Name and phone number of the responsible
person.

. Company name and address.
. Date.

. Chip number.

(3, B S L A

. Listing of options showing option number,
option name, and option value.

6. ROM data including addresses, unused
addresses are set to OP CODE zero (0), which is
a CLRA instruction.

7. Source, object, and transmittal file checksums.

To enter any information for the TRANSMITTAL file,
MASKTR must first be in the TRANSMITTAL mode.
This mode may be entered with the TRANSMITTAL
command (T) or by typing the filename on the end
of the '@MASKTR’ line.

When MASKTR is in the TRANSMITTAL mode the
user is requested to provide the necessary
information:

1. LOAD MODULE FILENAME
. CHIP NUMBER
. NAME AND PHONE NUMBER OF RESPONSIBLE PERSON

2
3
4. COMPANY NAME AND ADDRESS
5. DATE

6.

. OPTION VALUES

MASKTR prompts the user with a description of the
desired item required by the program, the current
value of the data item (as last entered by the user),
and then asks for the new value from the user. If no
change is required a carriage return will leave the
value unchanged; if a change is requested for the

chip number or options the value entered is
checked for validity. Entering a blank line causes
an advance to the next item to be entered.

The items are arranged in a circular order such that
the user will be prompted for responsible person
{(name/phone), company (namel/address), date, chip
number, options, and then back to responsible
persen in that order.

NOTE: A CNTL Q in column 1 causes a return to
the prompt mode.

To call MASKTR, type:

X>@MASKTR

MASKTR, REV:B, DATE
™

MASKTR is then ready to accept one of the
commands listed in Table 11.1 and described in
detail below.

Table 12.1. MASKTR Command Summary

Command Operand
Name Syntax Description
ABORT A Abort transmittal file creation
CHIP C Enter chip number
COMPANY co Enter company name/address
DATE D Enter date
FINISH F Finish transmittal file creation
LIST L List transmittal file
NAME N Enter responsible person
name/phone
OPTION O [<opt#>] Enter chip options
PRINT P <chip#> Print available options for chip

TRANSMITTAL T <filename> Begin creation of transmittal file

where:

<opt#> = Number of valid option far current chip number.
0" may be left off of command call if <opt#> is
used. This number causes entry mode to be
entered at the specified option number. If “O"
alone is used entry is at the beginning of the
option list.

<chip#> = Valid chip number and letter
<filename> = Standard PDS filename.

12.2. ABORT Command

Syntax:

Description:

Example:

T>A

ABORT

This command will abort the
creation of a transmittal file and
return the program to the PROMPT
mode.

ABORT TRANSMITTAL FILE CREATION (Y/N, CR=YES) CR
TRANSMITTAL FILE CREATION ABORTED

™

12.3. CHIP Command

Syntax:

Description:

Example:

Note:

CHIP -

This command causes the program
to prompt the user for the chip
number.

™C
CHIP NUMBER: 420L

CHIP NUMBER: 320L

EXTENDED TEMPERATURE RANGE (Y/N,
CR=Y)? CR

The chip number must be specified
in the above manner if parts with
extended temperature range are
desired.

12.4. COMPANY Command

Syntax:

Description:

Example:

COMPANY

This command causes the program
to prompt the user for the company
name and address. Eight lines are
allowed for this entry.

T>C0

COMPANY NAME AND ADDRESS
UNSPECIFIED

COMPANY NAME/ADDRESS:
NATIONAL SEMICONDUGTOR
2900 SEMICONDUCTOR DR.
SANTA CLARA, CA 95051

CR

DATE: UNSPECIFIED

12.5. DATE Command

Syntax:

Description:

Example:

DATE

This command causes the program
to prompt the user for the date. One
line is allowed for this entry.

™D
DATE: UNSPECIFIED
DATE: 1 JANUARY, 1979
CHIP NUMBER: 420

12.6. FINISH Command

Syntax:

FINISH

122

Description:

Example:

TFE

This command finishes creation of
the transmittal file, and writes it to
the disk. There is a prompt for the
disk to be sent to NSC to be placed
in the drive. NOTE: The disk must
be an initialized disk.

FINISH CREATION OF TRANSMITTAL FILE (Y/N, CR = YES) CR
INCOMPLETE OPTION SPECIFICATION

T

Note:

The user must completely define all
options before the program will
allow a transmittal file to be written
to the disk.

The FINISH command also checks
for conflicting CKO-CKI option
selections and option selections
which are illegal for a bonding
option value of 2.

12.7. LIST Command

Syntax:

Description:

Example:

LIST

This command causes the

transmittal file to be listed as it will

appear on the form that will be

returned to the customer from NSC

for verification and sign-off before a

mask will be generated from the

customer’s transmittal disk. S

NOTE: An *PR at the end of this
command will cause the listing to
go to the printer.

L

This example will list the
transmittal file on the console in
blocks that will fit on the screen. A
CcR will advance to the next block of
data. Any other key followed by a
cr will return to the PROMPT. A
CNTLQ@ will also return to the
PROMPT mode.

12.8. NAME Command

Syntax:

Description:

Example:

NAME

This command prompts the user for
the name/phone number of the

person responsible for this program.
Two lines are allowed for this entry.

>N

RESPONSIBLE NAME/PHONE:
UNSPEGIFIED

RESPONSIBLE NAME/PHONE:
JOE USER

123 456 7890

COMPANY NAME/ADDRESS:

12.9. OPTION Command

Syntax: [Option] [<opt#>]

Description: This command causes the program
to prompt the user for the valid
options for the chip specified. If the
“QO" is omitted the <opt#> must be
specified. If the “O” is inserted and
<opt#> is omitted the program
prompts for options from the first
option.

Example:
™0 12

OPTION 12: L3 DRIVER = UNSPECIFIED

00 =STANDARD OUTPUT
01=0PEN DRAIN

02=HI CURRENT LED SEG OUT
03 =HI CURRENT TRI-STATE

04 =LOW CURRENT LED SEG OUT
06 = LOW CURRENT TRI-STATE

OPTION 12: L3 DRIVER 01
OPTION 12: L3 DRIVER=01 (Y/N, CR=YES) CR

OPTION 13: L2 DRIVER = UNSPECIFIED

12.10. PRINT Command

Syntax: PRINT <CHIP#>

Description: This command prints out the
allowable options for the chip
specified in the command.

NOTE: If an *PR is entered at the
end of the line the options are sent
to the printer.
Example:
T>P 420

ABORT TRANSMITTAL FILE CREATION (Y/N, CR=YES); CR

TRANSMITTAL FILE CREATION ABORTED
T>P 420

CHIP NUMBER: 420

OPTION 1: GROUND
NOT AN OPTION

OPTION 2: CKO OUTPUT

00=CLOCK GEN OUT XTAL/RES
01=RAM KEEP ALIVE
02=GENERAL INPUT, VCC LOAD
03 =MULTICOP SYNC IN

04 = GENERAL INPUT, HI-Z

This example will print the COP420 options on
the console. As in the LIST command, the block
of data is sent to the screen and a cR return
will advance through the options. An *PR will

12-3

put the options to the printer. The print
command can NOT be used wile in the
TRANSMITTAL MODE.

12.11. TRANSMITTAL Command

Syntax: TRANSMITTAL < filename>

Description: When the TRANSMITTAL command
is invoked, the chip number prompt
Is given. The LOAD MODULE is read
into memory, and the entered chip
number is checked against the chip
number contained in the LOAD
MODULE (assembled with
REV B ASM). If the chip numbers do
not match the program aborts the
TRANSMITTAL command and
returns to prompt. If the chip
numbers agree, the valid chip
number is entered into the data
table and used to determine which
options are valid and available. The
ROM data and option values (if any)
from the LOAD MODULE are also
entered into the data table.

The TRANSMITTAL command may
also be invoked by typing the
filename on the @MASKTR line.

Example:
EXEC, REV:A
X>@MASKTR
MASKTR, REV:B,DATE
M>T MASKEX
DISK WITH LOAD MODULE IN DRIVE (Y/N, CR=YES)? CR

CHIP NUMBER: UNSPECIFIED
CHIP NUMBER: 421

CHIP NUMBER: 421
CHIP NUMBER: CR

ERROR: PROGRAM ASSEMBLED FOR 420
M>T MASKEX

DISK WITH LOAD MODULE IN DRIVE (Y/N, CR=YES)? CR

CHIP NUMBER: UNSPECIFIED
CHIP NUMBER: 420

CHIP NUMBER: 420
CHIP NUMBER: CR

RESPONSIBLE NAME/PHONE:
UNSPECIFIED
RESPONSIBLE NAME/PHONE:
JOE COPUSER

415) 777-6234

COMPANY NAME/ADDRESS:
UNSPECIFIED

COMPANY NAME/ADDRESS:
NATIONAL SEMICONDUCTOR
2900 SEMICONDUCTOR DRIVE
SANTA CLARA, CA 95051

CR

DATE: UNSPECIFIED
DATE: JANUARY 5, 1979

CHIP NUMBER: 420
CHIP NUMBER: CR

OPTION 01: GROUND =00

NOT AN OPTION

OPTION 02: CKO OUTPUT =02

00=CLOCK GEN OUT XTAL/RES
01=RAM KEEP ALIVE

02 =GENERAL INPUT, VCC LOAD
03 = MULTICOP SYNC IN

04 = GENERAL INPUT, HI-Z

OPTION 02: CKO OUTPUT CR
OPTION 03: CKI INPUT =04

00 =XTAL 116

01=XTAL /8

02=TTL 16

03=TTL /8

04 =RC/4

05 = OSC (SCHMITT IN) /4
OPTION 03: CKI INPUT CR
OPTION 04: RESET INPUT =00

00=LOAD VCC
01=HiI-Z

OPTION 04: RESET INPUT 1

OPTION 04: RESET INPUT =01 (Y/N, CR=YES)? CR

OPTION 05: L7 DRIVER =02

00=STANDARD OUTPUT
01=0PEN DRAIN

02=HI CURRENT LED SEG OUT
03 =HI CURRENT TRI-STATE

OPTION 05: L7 DRIVER CR
OPTION 06: L6 DRIVER =02
00 = STANDARD OUTPUT
01=0PEN DRAIN
02 =HI GURRENT LED SEG OUT
03 = HI GURRENT TRI-STATE
OPTION 06: L6 DRIVER CR
OPTION 07: L5 DRIVER =02
00 = STANDARD OUTPUT
01=0PEN DRAIN
02=HI CURRENT LED SEG OUT
03 = HiI CURRENT TRI-STATE

OPTION 07: L5 DRIVER CR

12-4

OPTION 08: L4 DRIVER =02
00=STANDARD OUTPUT
01=0PEN DRAIN
02=HI CURRENT LED SEG OUT
03=HI CURRENT TRI-STATE

OPTION 08: L4 DRIVER GR

OPTION 09: IN 1 INPUT =00

00=TTL LOAD
01=TTL HI-Z

OPTION 09: IN 1 INPUT CR
OPTION 10: IN 2 INPUT =00

00=TTL LOAD
01=TTL HI-Z

OPTION 10: IN 2 INPUT CR
OPTION 11: VCC =00
NOT AN OPTION
OPTION 12: L3 DRIVER =02
0C = STANDARD OUTPUT
01=0PEN DRAIN
02 =HI CURRENT LED SEG OUT
03 = HI CURRENT TRI-STATE
OPTION 12: L3 DRIVER CR
OPTION 13: L2 DRIVER =02
00 = STANDARD OUTPUT
01=0PEN DRAIN
02 =HI CURRENT LED SEG OUT
03 = HI CURRENT TRI-STATE
OPTION 13: L2 DRIVER CR
OPTION 14: L1 DRIVER =02
00 = STANDARD OUTPUT
01=0PEN DRAIN
02 = HI CURRENT LED SEG OUT
03 = HI CURRENT TRI-STATE
OPTION 14: L1 DRIVER CR

OPTION 15: L0 DRIVER =02
00 = STANDARD OUTPUT
01=0PEN DRAIN
02=HI CURRENT LED SEG OUT
03=HI CURRENT TRI-STATE
OPTION 15: LO DRIVER CR

OPTION 16: SI INPUT =00

00=LOAD VCC
01=HI-Z

OPTION 16: SI INPUT CR

OPTION 17: SO DRIVER=02

-

00=STANDARD OUTPUT
01=0PEN DRAIN
02 = PUSH/PULL
OPTION 17: SO DRIVER CR
OPTION 18: SK DRIVER =02
00 = STANDARD OUTPUT
01=0PEN DRAIN
02 = PUSH/PULL
OPTION 18: SK DRIVER CR

OPTION 19: IN O INPUT=00

00 =TTL LOAD
01=TTL HI-Z

OPTION 18: IN 0 INPUT CR
OPTION 20:: 'IN 3 INPUT =00

00=TTL LOAD
01=TTL HI-Z

OPTION 20: IN 3 INPUT CR
OPTION 21: GO /O PORT =00
00 = STANDARD OUTPUT
01=0PEN DRAIN
02 = STANDARD OUTPUT SMALL DRIVER
03 =0PEN DRAIN SMALL DRIVER
OPTION 21: GO IO PORT CR
OPTION 22: G1 I/O PORT =00
00 =STANDARD OUTPUT
01=0PEN DRAIN
02 = STANDARD QUTPUT SMALL DRIVER
03=0PEN DRAIN SMALL DRIVER
OPTION 22: G11/O PORT CR
OPTION 23: G2 /O PORT =00
00 = STANDARD OUTPUT
01=0PEN DRAIN
02 =STANDARD QUTPUT SMALL DRIVER
03 =0PEN DRAIN SMALL DRIVER
OPTION 23: G2 I/0O PORT CR
OPTION 24: G3 I/O PORT =00
00 =STANDARD OUTPUT
01=0PEN DRAIN
02 = STANDARD OUTPUT SMALL DRIVER
03 =0PEN DRAIN SMALL DRIVER

OPTION 24: G3 I/O PORT CR

OPTION 25: D3 GUTPUT =00

125

00 = STANDARD OUTPUT
01=0PEN DRAIN

OPTION 25: D3 OUTPUT CR
OPTION 26: D2 OUTPUT =00

00 = STANDARD OUTPUT
01 =0PEN DRAIN

OPTION 26: D2 QUTPUT CR
OPTION 27: D1 QUTPUT =00

00 = STANDARD QUTPUT
01 =0OPEN DRAIN

OPTION 27: D1 QUTPUT CR
OPTION 28. DO QUTPUT =00

00 = STANDARD OQUTPUT
01 =0PEN DRAIN

OPTION 28: DO QUTPUT CR
OPTION 29: COP FUNCTION =00

00 = NORMAL
01=MICROBUS

OPTION 29: COP FUNCTION CR
OPTION 30: COP BONDING = UNSPECIFIED

00 =28 PIN PACKAGE
02 =28 AND 24 PIN PACKAGES

OPTION 30: COP BONDING 2
OPTION 30: COP BONDING =02 (Y/N, CR=Y) CR
OFTION 31: IN INPUT LEVEL =00

00 = STANDARD TTL
01 =HIGH TRIP POINT

OPTION 31: IN INPUT LEVEL CR
OPTION 32: G INPUT LEVEL = UNSPECIFIED

00 = STANDARD TTL
01=HIGH TRIP POINT

OPTION 32: G INPUT LEVEL 1
OPTION 32: G INPUT LEVEL=01 (Y/N, CR=YES)? CR
OPTION 33: L INPUT LEVEL = UNSPECIFIED

00 = STANDARD TTL
01=HIGH TRIP POINT

OPTION 33: L INPUT LEVEL 1

OPTION 33: L INPUT LEVEL=01 (Y/N. CR=YFS)? GR

OPTION 34: CKO INPUT LEVEL = UNSPECIFIED

00=STANDARD TTL
01=HIGH TRIP POINT

OPTION 34: CKO INPUT LEVEL O
OPTION 34: CKO INPUT LEVEL =00 (Y/N, CR=YES)? CR
OPTION 35: Sl INPUT LEVEL = UNSPEGIFIED

00=STANDARD TTL
01=HIGH TRIP POINT

OPTION 35: SI INPUT LEVEL 0O
OPTION 35: SI INPUT LEVEL =00 (Y/N, CR=YES)? CR
RESPONSIBLE NAME/PHONE:

JOE COPUSER
(415) 777-6234

RESPONSIBLE NAME/PHONE: CR
COMPANY NAME/ADDRESS:
NATIONAL SEMICONDUCTOR

2900 SEMICONDUCTOR DRIVE
SANTA CLARA, CA 95051

USA

COMPANY NAME/ADDRESS: CNTLQ

#

ML

PDS TRANSMITTAL FILE

RESPONSIBLE NAME/PHONE:

JOE COPUSER
(415) 777-6234

COMPANY NAME/ADDRESS:
NATIONAL SEMICONDUCTOR
2900 SEMICONDUCTOR DRIVE
SANTA CLARA, CA 95051
DATE: JANUARY 5, 1979

FILE NUMBER B8A7 62A0 102B

CHIP NUMBER: 420

OPTION VALUE OPTION VALUE
01: GROUND =00 10: IN 2 INPUT =00
02: CKO OUTPUT =02 11: VCC =00
03: CKI INPUT =04 12: L3 DRIVER =02
04: RESET INPUT =01 13: L2 DRIVER =02
05: L7 DRIVER =02 14 L1 DRIVER =02
06: L6 DRIVER =02 15 LO DRIVER =02
07: L5 DRIVER =02 16: Sl INPUT =00
08: L4 DRIVER =02 17: SO DRIVER =02
09: IN 1 INPUT =00 18: SK DRIVER =02

126

OPTION

18: IN 0 INPUT

20: IN 3 INPUT

21: GO /O PORT
22: G11/0 PORT
23: G2 /0 PORT
24: G3 /O PORT
25: D3 OUTPUT
26: D2 QUTPUT
27: D1 OUTPUT
ROM VALUES:

000 00 33 5E
010 7F 33 BB
020 51 5E 49
030 00 00 00
040 33 BB 15
050 2C 05 5F
060 2C 05 52
070 52 55 21
080 15 23 B9
090 48 OE 68
0A0 33 2A 40
0BO 3F 04 04
0CO 30 4A 07
0DO 00 00 00
OE0 00 00 0O
100 43 01 4B
110 01 23 21
120 00 CA 08
130 4A 48 0A
140° SF ET BF
150 F3 3F F3
160 00 00 20
170 31 00 51
180 1E 15 54
190 33 3C 33
1A0 4F OE 05
1B0 3E 35 AB
1C0 6B 40 33
100 51 DE 23
1EQ- BE-E8-2E
1F0 3C 32 21
ROM VALUES

200 30 31 32
210 00 7D 51
220 00 41 53
230 00 5A 58
240 00 21 22
250 00 7D 51
260 00 41 53
270 00 5A 58
280 33 A1 05
280 16 73 35
2A0 5A FO 07
2B0 3E 05 50
2C0 0D 00 07
200 2B 11 32
2E0 33 AB 33
2F0 00 00 00
300 O0AODOF
310 43 4C DD
320 F5 33 B8
330 33 91 80
340 33 01 48

VALUE

28:
29:
30:
31
32:
33

34:
35:

33 6C 2E BD 3E
7F 2E 7D &1
48 00 00 00
00 00 00 OO
5F CC 5F DA 5B
00 26 50 00 16
5F 48 06 25 50
CA 3A 46 CA 00
05 23 AS 48 05
8D 1D 00 52 07
06 4C 32 4F 5F
04 04 04 04 04
00 56 30 4A 08
00 00 00 00 CO
00 00 00 00 00

03 4B
03 49
48 48
4A 48
39 OF 79
ED 01 3E
FF ED ED
41 60 61
BF 33 2C
5F 1F 22
3E 4F 35
50 05 23
5E 3E 05
3D 28 68
05 5E E9
22

03
02
D8
42

01
90
3B
42
14|
30
58
7
16
05
50

03
AQ
10
48
BD
36
00
01
06
B9
32
8F 15
52 DO
B8 A9
63 CO
32 2E

3E
2B
5E
68

33
57
44
43
23
57
44
43

34
45
46
56
24
45
46
56
5F C7
4E 58
BD SE
48 33
C2 OF
03 D6
2C 16
00 00

35
52
47
42
25
52
47
42
06
CF
€D
AT
06
13
06
00

36 37
59
AR
4D
27
54 59
48 4A
5E 5D
FO 07
2F 7D
33 A3
01 co
1D 00
54 3D
20 42
00 00

13
29
05 5E
6A CO
33 68

18 2B 38 3A
50 80 F5
D6 28 7F
33 6C 48

39 13 DF

OPTION

DO OUTPUT =00
GCOP FUNCTION =00
COP BONDING =02
IN INPUT LEVEL =00
G INPUT LEVEL =01
L INPUT LEVEL =01
CKO INPUT LEVEL =00
SIINPUT LEVEL =00

8D 91
00 01
00 00
00 00
68 60
72 CA
23 28
00 00
23 B9
95 1E
4D C8
C7 OE
05 48
00 00
00 00

3A
51
00 00
00 00
63 CB
00 58
16 23
00 00
05 04
70 70
05 51
33 3E
00 00
00 00
00 00

70
11

3E
51

00
00
0o
21

38
00
83
2C

7D
03
00
00
58

33
51
00
00
21

48
00
07
48
5F AB
22 00
00
0o
00

48

888

a0
B4
30
4A
F6
00
00
71

oF
4F
4F
23
23
A9
A9
00

4B
54
84
aA

4B
23
FC
CE
1

09
co
01

33
OF
ED
05
2A
F4
05
08

30
02
48
88
70 38
31 00
CO 00
00 80
2C
05
BA

02
24
80
10

14
01
00
02
36 36
0E 00
C0 00
C8 40
06 38
44 1E
BA 33
1B 43 42
3 1 5C DB
6B 4D FB 23
3E 21 D8 3D
3E AA 06 61

24
A0
c2
04

00
00
61

BF
44
41

80
3D
32
2D
30

4F
80

39
40
4C
2E
29
49
5C
3E
3A
33
5C
0o
07
53
00
0o

30 2A
4F 50
3B 7F
2F 20
40 3A
5F 40
28 7F 0D
3F 20 08
11 CD D6
A7 BD 5A
ED 07 70
00 00 00
C9 1F 06
03 52 11
00 00 00
00 00 0O

2D
0A
0D 00
08
3D
0A

4B

00 00

35 2

5]

33 B8 D6 2A DF
3B 05 5E E6 06 05 50
38 7F F5 2C 05 5F E1
E6 29 15 70 06
33 2C 16 06 39

@

29 05

AB
13
00
00
F1

EF 91 CA

00
00
8D
ac
48
56
00
00
00

03
02
20
LA
3F
08
00
83
15
05
5F
9F
D7
3D
05
80

00

29
87
06

63 0A

56

350 DD 15 23 BB 05 23 A8 68 60 39 76 63 26 00 FF 01 CREATING FILE JOEUSER:MASKEX. TRN
360 E6 73 29 25 50 C9 72 29 43 4D 05 50 33 2C 07 CC

370 00 00 00 00 00 00 00 00 00 00 00 00 00 0O Q0 00 M>

380 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 foks :

390 00 00 0O 00 0O 00 00 00 0D 00 00 00 00 0O 00 00 The disk is now ready to be sent to:

3A0 00 00 0O 00 00 0O 00 00 00 00 00 G0 00 00 00 00 ; :

380 00 00 00 00 DO 00 00 0O G0 00 00 G0 00 00 00 0O National Semicanductor Corp.

3C0 9F 5F C6 51 68 18 61 FB B9 3E 05 2D 06 3G 05 3D 2900 Semiconductor Dr.

3D0 06 2E 70 3A 03 C6 6A CE 3B 13 E9 05 52 06 23 28 Santa Clara, CA 95051

3E0 BO 23 38 BO 3A 01 B0 40 C6 3F 4B E4 00 00 00 00 ATTN:

3F0 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 0O : y
COP Control Customer Service

SOURCE CHECKSUM 62A0 DISK/DISK/DISK/DISK/DISK/DISK

OBJECT CHECKSUM 1028 NOTE: A mailing package, which includes a label

with this information, is available from:
TRANSMIT CHECKSUM BBA7

M>FI COPS Marketing, M/S C2385
3 National Semiconductor
FINISH CREATION OF TRANSMITTAL FILE (Y/N, CR = YES)? CR 2900 Semiconductor Dr.

Santa Clara, CA 95051

DISK TO BE MAILED IN DRIVE (Y/N, CR=YES)? CR Phone: (408) 737-5883

12-7

.

Memory Diagnostic

(MDIAG)

13.1. Use of Memory Diagnostics

MDIAG is a PDS system program which allows the
user to run diagnostics on the PDS memory. This
proegram will run ADDRESS, BIT, WORD, AND
GALPAT tests. The program will test the area in
which it resides by moving the entire program just
before the tests are run on that section of memory.
After the tests are run on that section of memory
the program is restored to its original location.

All reports of errors or passes are sent to the
console unless the *PR is invoked, in which case
all reports will be routed to the printer (i.e., overnite
runs).

ADDRESS Test

In the ADDRESS test, the address of each memory
location in the test range is stored in that memory
location. Each location is then checked for the
proper value. This test checks the addressing
capability of the PDS CPU and MEMORY boards.

WORD Test

In the WORD test, a value is stored in successive
memory locations. As each value is stored, that
memory location is checked for the proper value.
The value is then complemented, stored again, and
the location is rechecked. Finally, the value is
recomplemented, stored again, and the location is
rechecked once again. Then the next memory
location is tested in the same manner, until the end
of the test range is reached. Then, the entire test is
repeated for a total of two passes. This test checks
whether memory words within the test range can
save the given values and their complements.

BIT Test

In the BIT test, each bit of each word in the test
range is tested in the same manner as in the
WORD test above. This test is identical to the
WORD test except that a single “1"-BIT MASK is
used for memory store and compare operations,
and this mask is changed (after completing testing
of the bit) to the next bit of the word. When all bits
of one word are exhausted, the test advances to
the next word of the test range.

GALPAT Test

In the GALPAT test, a background word (X'AAAA) is
stored in each memory location in the test range.

1341

22

Each location in the test range is then checked for
the proper value. Next, a test word (X'5555) is
stored in the first memory location of the test
range. All the background locations are tested
sequentially, with the test location being tested
between each sequential background location.
Then, the location where the testword was loaded
is restored to the background word, and the
testword is moved to the next location following
the one it was stored in previously. All locations in
the test range are checked again, in the same
manner. This process continues until the testword
has been stored once in every location of the test
range. This completes PASS 1. Then, the
background word and the test word are swapped
(BACKGROUND = X'5555, TESTWORD = X’'AAAA)
and the entire test is repeated for PASS 2. This test
tests for “crosstalk™ between memory locations.
Note that the test time is proportional to the
square of the range to be tested. Testing a 2K
range takes about four times as long as testing a
1K range.

The diagnostics are broken into
ADDRESS/WORD/BIT tests on 0/4K, 4/16K,
AQOO/AFFF, and DCOO/DFFF. The GALPAT tests &.
broken into 1K increments. The parameter routine
prompts for all required inputs: addresses to be
tested, tests to be run, and the mode in which the
tests are to be run. The tests allowed are
ADDRESS (A), WORD (W), BIT (B), GALPAT (G), or
ALL (CR).

The modes allowed are CONTINUQUS (C) and
HALT (H).

The CONTINUOUS (C) MODE continues testing
until interrupted by a keyboard entry. If an error is
encountered the error is reported and the next
block of memory is then tested. If no errors ocour,
then the block tested is reported and the next
block is tested.

The HALT (H) MODE tests the memory until there is
an error, in which case the error Is reported and the
test is terminated, or until the entire requested test
range is tested, in which case the addresses are
reported and the test halts.

To call MDIAG, type:
X>@MDIAG

MDIAG, REV A, DATE
M>

MDIAG is then ready to accept one of the
commands described below.

The commands accepted by this program are:

PARAMETER — This command gets all the
parameters required to run this program. The user
is prompted for the type of input required and
illegal responses are rejected.

RUN — This command runs the tests as specified
by the input to the PARAMETER command.

Examples:

M>PA

ADDRESS RANGES 0/3FFF, ADOO/AFFF, DCOO/DFFF
MAY BE SPECIFIED O/AFFF OR 100/FFFF ETC.

ADDRESS RANGE TO BE TESTED? (CR=ALL) O/3FFF
TESTS? (CR=ALL) A, B, W
MODE FOR RUNNING TESTS, C=CONTINUOUS, H=HALT
MODE (CR=H) C
M>RUN
ADDRESS, WORD, BIT TEST(S) PASSED AT 1000/3FFF
ADDRESS, WORD, BIT TEST(S) PASSED AT 0000/0FFF
ADDRESS, WORD, BIT TEST(S) PASSED AT 1000/3FFF
ADDRESS, WORD, BIT TEST(S) PASSED AT 0000/0FFF
CONTINUE TEST? (Y/N, GR=YES)? CR

(keyboard interrupt)

ADDRESS, WORD, BIT TEST(S) PASSED AT 1000/3FFF
CONTINUE TEST? (Y/N, CR=YES)? N

M>

13-2

This example ran the ADDRESS, WORD, and BIT
tests on the system program memory space.

M>PA

ADDRESS RANGES 0/3FFF, AOOO/AFFF, DCOO/DFFF
MAY BE SPECIFIED O/AFFF OR 100/FFFF ETC.

ADDRESS RANGE TO BE TESTED (CR=ALL) A0O00/A080

TESTS TO BE RUN
A =ADDRESS, B=BIT, W=WORD, G = GALPAT

TESTS? (CR=ALL) CR

MODE FOR RUNNING TESTS, C=CONTINUOUS, H = HALT
MODE? (GR=H) C

M>RU

ADDRESS, WORD, BIT TEST(S) PASSED AT AO000/ACB0
GALPAT BACKGROUND ERRCR TEST FAILED AT A010
DATA SHOULD BE AAAA/DATA IS AAEA

ADDRESS, WORD, BIT TEST(S) PASSED AT AQ00/A080
CONTINUE TEST? (Y/N, CR=YES)? N

M>

This example runs all tests on addresses
ADOO/ADBO reporting pass/fail information until a
keyboard interrupt. (NOTE: A KEYBOARD
INTERRUPT IS ONLY TESTED DURING A
MESSAGE OUTPUT.)

National Semiconductor Corporation
2900 Semiconductor Drive

Santa Clara, California 95051

Tel: (408) 737-5000

TWX: (910) 339-9240

National Semiconductor
District Sales Office

345 Wilson Avenue, Suite 404
Downsview, Ontario M3H 5W1
Canada

Tel: (416) 635-7260

Mexicana de Electronica
Industrial S.A.
Tlacoquemecat! No. 139-401
Esquina Adolfo Prieto
Mexico 12, D.F.

Tel: 575-78-68, 575-79-24

NS Electronics Do Brasil

Avda Brigadeiro Faria Lima 844

11 Andar Conjunto 1104

Jardim Paulistano

Sao Paulo, Brasil

Telex: 1121008 CABINE SAO PAULO

(211980 National Semiconductor Corp.

National Semiconductor GmbH
Eisenheimerstrasse 61/2

8000 Minchen 21

West Germany

Tel: 089/9 15027

Telex: 522772

National Semiconductor (UK) Ltd.

301 Harpur Centre
Horne Lane
Bedford MK40 1TR
United Kingdom
Tel: 0234-47147
Telex: 826 209

National Semiconductor Benelux
789 Ave. Houba de Strooper
1020 Bruxelles

Belgium

Tel: (02) 4783400

Telex: 61007

National Semiconductor Ltd.
Vodroffsvej 44

1900 Copenhagen V
Denmark

Tel: (01) 356533

Telex: 15179

National Semiconductor
Expansion 10000

28, Rue de la Redoute

92 260 Fontenay-aux-Roses
France

Tel: (01) 660-8140

Telex: 250956

National Semiconductor S.p.A.
Via Solterino 19

20121 Milano

Italy

Tel: (02) 345-2046/7/8/9

Telex: 332835

National Semiconductor AB
Box 2016

12702 Skarholmen

Sweden

Tel: (08) 970190

Telex: 10731

National Semiconductor
Calle Nunez Morgado 9
Esc. DCHA. 1-A

Madrid 16

Spain

Tel: (01) 215-8076/215-8434
Telex: 46642

National Semiconductor Switzerland

Alte Winterthurerstrasse 53
Postfach 567

CH-8304 Wallisellen-Zirich
Tel: (01) 830-2727

Telex: 59000

NS International Inc., Japan
47F Shinjuku Center Building
1-25-1 Nishishinjuku, Shinjuku-ku
Tokyo, Japan

Tel: (04) 355-5711

TWX: 232-2015 JSCJ-J

National Semiconductor (Hong Kong) Ltd.
8th Floor, !

Cheung Kong Electronic Bldg.

4 Hing Yip Street

Kwun Tong

Kowloon, Hong Kong

Tel: 3-411241-8

Telex: 73866 NSEHK HX

Cable: NATSEMI

NS Electronics Pty. Ltd.

Cnr. Stud Rd. & Mtn. Highway
Bayswater, Victoria 3153
Australia

Tel: 03-729-8333

Telex: 32096

National Semiconductor (Pty.) Ltd.
10th Floor

Pub Building

Somerset Road

Singapore 0923

Tel: 7379338/7379339

Telex: NAT SEMI RS 21402

National Semiconductor (Taiwan) Ltd.
Rm. B, 3rd Floor

Ching Lin Bldg.

No. 8, Ching Tao E. Road

P.O. Box 68-332 or 39-1176 Taipei

Tel: 3917324-6

Telex: 22837 NSTW

Cable: NSTW TAIPE!

National Semiconductor (Hong Kong) Ltd.
Korea Liaison Office :
6th Floor, Kunwon Bldg.

1-2 Mookjung-Dong

Choong-Ku, Seoul

C.P.O. Box 7941 Seoul

Tel: 267-9473

Telex: K24942

-

DA-FL5M50/ Printed in U.5.A,

National Semiconductor 2900 Semiconductor Drive Cable: NATSEMICON
Semiconductor Division Santa Clara, California 95051 Telex: 346353
(408) 737-5000 TWX: 910 339 9240

Dear Customer:

If the need ever arises to ship your COP-400PDS to another
location, there are certain shipping precautions that should
be employed to ensure the safe arrival of your system. These
precautions are as follows:

- Remove the cover of the COPs system and check to
see if there is a tie wrap around the card cage.
If none is visable, use the attached instructions
to secure your own tie wraps around the card cage.
If no tie wraps are available, remove the cards,
wrap in anti-static bags, and ship separately
packed in foam.

- Remove the keys from the lock and tape to the
top of the system.

- Open the door to the floppy disc drive and insert
a pliece of foam or other material to prevent any
movement.

- If the original box is no longer available, use a
box slightly larger that the system so that the
potential impact planes can be covered with two
inches of Ethafoam®™ or another form of semi-rigid
packaging. We advise against the use of popcorn
type filler due to its tendency to compress.

If you have any questions on shipping your COP-400PDS, please
call the Microcomputer Service Department at (408)737-6270.

Gl Pl e o
“}4&7 &ﬂﬁ#@{ét;;@’
M. Antuna
Microcomputer
Service Manager

422305548-001
Rev. A

Pg. 1 of 2

g I ka
Y a9
T00-8¥S50ECCy

A9% 0 GdvD 540

SAN3
dvyM 311 35007 440 411D)

ONNS TTIL NILHOIL (&)

NMOHS SV SL3XNOVY8
39v) ayvd ANNOYY d0071(2)

43HL3IO0L SdvyM 3IL
3ZIS 394V h 80 € HOVLLV(D)

	COP400PDSUsersManual_0001
	COP400PDSUsersManual_0002
	COP400PDSUsersManual_0003
	COP400PDSUsersManual_0004
	COP400PDSUsersManual_0005
	COP400PDSUsersManual_0006
	COP400PDSUsersManual_0007
	COP400PDSUsersManual_0008
	COP400PDSUsersManual_0009
	COP400PDSUsersManual_0010
	COP400PDSUsersManual_0011
	COP400PDSUsersManual_0012
	COP400PDSUsersManual_0013
	COP400PDSUsersManual_0014
	COP400PDSUsersManual_0015
	COP400PDSUsersManual_0016
	COP400PDSUsersManual_0017
	COP400PDSUsersManual_0018
	COP400PDSUsersManual_0019
	COP400PDSUsersManual_0020
	COP400PDSUsersManual_0021
	COP400PDSUsersManual_0022
	COP400PDSUsersManual_0023
	COP400PDSUsersManual_0024
	COP400PDSUsersManual_0025
	COP400PDSUsersManual_0026
	COP400PDSUsersManual_0027
	COP400PDSUsersManual_0028
	COP400PDSUsersManual_0029
	COP400PDSUsersManual_0030
	COP400PDSUsersManual_0031
	COP400PDSUsersManual_0032
	COP400PDSUsersManual_0033
	COP400PDSUsersManual_0034
	COP400PDSUsersManual_0035
	COP400PDSUsersManual_0036
	COP400PDSUsersManual_0037
	COP400PDSUsersManual_0038
	COP400PDSUsersManual_0039
	COP400PDSUsersManual_0040
	COP400PDSUsersManual_0041
	COP400PDSUsersManual_0042
	COP400PDSUsersManual_0043
	COP400PDSUsersManual_0044
	COP400PDSUsersManual_0045
	COP400PDSUsersManual_0046
	COP400PDSUsersManual_0047
	COP400PDSUsersManual_0048
	COP400PDSUsersManual_0049
	COP400PDSUsersManual_0050
	COP400PDSUsersManual_0051
	COP400PDSUsersManual_0052
	COP400PDSUsersManual_0053
	COP400PDSUsersManual_0054
	COP400PDSUsersManual_0055
	COP400PDSUsersManual_0056
	COP400PDSUsersManual_0057
	COP400PDSUsersManual_0058
	COP400PDSUsersManual_0059
	COP400PDSUsersManual_0060
	COP400PDSUsersManual_0061
	COP400PDSUsersManual_0062
	COP400PDSUsersManual_0063
	COP400PDSUsersManual_0064
	COP400PDSUsersManual_0065
	COP400PDSUsersManual_0066
	COP400PDSUsersManual_0067
	COP400PDSUsersManual_0068
	COP400PDSUsersManual_0069
	COP400PDSUsersManual_0070
	COP400PDSUsersManual_0071
	COP400PDSUsersManual_0072
	COP400PDSUsersManual_0073
	COP400PDSUsersManual_0074
	COP400PDSUsersManual_0075
	COP400PDSUsersManual_0076
	COP400PDSUsersManual_0077
	COP400PDSUsersManual_0078
	COP400PDSUsersManual_0079
	COP400PDSUsersManual_0080
	COP400PDSUsersManual_0081
	COP400PDSUsersManual_0082
	COP400PDSUsersManual_0083
	COP400PDSUsersManual_0084
	COP400PDSUsersManual_0085
	COP400PDSUsersManual_0086
	COP400PDSUsersManual_0087
	COP400PDSUsersManual_0088
	COP400PDSUsersManual_0089
	COP400PDSUsersManual_0090
	COP400PDSUsersManual_0091
	COP400PDSUsersManual_0092
	COP400PDSUsersManual_0093
	COP400PDSUsersManual_0094
	COP400PDSUsersManual_0095
	COP400PDSUsersManual_0096
	COP400PDSUsersManual_0097
	COP400PDSUsersManual_0098
	COP400PDSUsersManual_0099
	COP400PDSUsersManual_0100
	COP400PDSUsersManual_0101
	COP400PDSUsersManual_0102
	COP400PDSUsersManual_0103
	COP400PDSUsersManual_0104
	COP400PDSUsersManual_0105
	COP400PDSUsersManual_0106
	COP400PDSUsersManual_0107
	COP400PDSUsersManual_0108
	COP400PDSUsersManual_0109
	COP400PDSUsersManual_0110
	COP400PDSUsersManual_0111
	COP400PDSUsersManual_0112
	COP400PDSUsersManual_0113
	COP400PDSUsersManual_0114
	COP400PDSUsersManual_0115
	COP400PDSUsersManual_0116
	COP400PDSUsersManual_0117
	COP400PDSUsersManual_0118
	COP400PDSUsersManual_0119
	COP400PDSUsersManual_0120
	COP400PDSShipping_0001
	COP400PDSShipping_0002

